Asian Journal of Engineering and Applied Technology
ISSN: 2249-068X (P) VVol.8 No.2, 2019, pp. 50-56

© The Research Publication, www.trp.org.in

DOIL: https://doi.org/10.51983/ajeat-2019.8.2.1138

Study of Properties of Differential Transform Method for Solving the
Linear Differential Equation

Nandita Das
Department of Mathematics, Faculty of Science, Islamic University, Kushtia, Bangladesh
E-Mail: nanditadas.math@gmail.com
(Received 20 March 2019; Revised 16 April 2019; Accepted 15 May 2019; Available online 24 May 2019)

Abstract - The differential transformation method (DTM) is an
alternative procedure for obtaining an analytic Taylor series
solution of differential linear and non-linear equations.
However, the proofs of the properties of equation have been
long ignoredin the DTM literature. In this paper, we present
an analytical solution for linear properties of differential
equations by using the differential transformation method.
This method has been discussed showing the proof of the
equation which are presented to show the ability of the method
for linear systems of differential equations. Most authors
assume the knowledge of these properties, so they do not
bother to prove the properties. The properties are therefore
proved to serve as a reference for any work that would want to
use the properties without proofs. This work argues thatwe can
obtain the solution of differential equationthrough these proofs
by using the DTM. The result also shows that the technique
introduced here is accurate and easy to apply.

Keywords: Differential Transformation Method, DTM, Taylor
Series, Linear Properties, Differential Equations

I. INTRODUCTION

Constructing  power-series  solutions to differential
equations, especially those which do not admit a closed-
form solution, has long been an important, and widely-used,
solution technique. Traditionally, computing power-series
solutions required a fair amount of “boiler-plate” symbolic
manipulation, especially in the setup of the power-matching
phase. The differential transformation method (DTM)
enables the easy construction of a power-series solution by
specifying a conversion between the differential equation
and a recurrence relation for the power-series coefficients
[1, 2]. The differential transformation method (DTM) is an
alternative procedure for obtaining an analytic Taylor series
solution of differential equations. The main advantage of
this method is that it can be applied directly to nonlinear
differential equations without requiring linearization and
discretization, and therefore, it is not affected by errors
associated with discretization.

The concept of DTM was first introduced in the early 1986
by Zhou [3], who solved linear and nonlinear problems in
electrical  circuits.Differential ~ transformation  method
(DTM) has been applied to solve linear and non-linear
systems of ordinary differential equations [4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17] and non-linear system in
particular.In this research, we present an analytical solution
for linear properties of differential equations by using the
differentialtransformation method.
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Il. MATERIAL AND METHODS

A. Basic Definition: It is well known that if a function u is
infinitely continuously differentiable, then u can be
expressed in Taylor series as

1 d*u(x,)
U()Zldk( — %) )
We define the differential transform (DT) of order K ,
denoted by U(k), by

1] d"u(x)
V0= e @

X=X,

In order to solve a given ODE by differential transform
method, we make use of the differentialtransform of order k
given by Equation (2). The differential inverse transform of
U(K) is defined as follows:

00 = YU K)(x- 1) @

In real applications, the function u(x) is expressed by a finite
series and Equation (3) can be truncated, and will be
denoted by,

Ug' (X)= kZ:;U (k) (x=%,)" @

Equation (4) implies that Z:;KHU (k)(X - Xo)k

negligibly small and, in fact, represents the error. The
method for calculating this solution is called DTM (K).

For convenience, we denote the Differential Transform
operator of kth order by 2, as follows,

Uk =D u]= 2| L L

— D*u
' dx k!

®)

Where D¥
toX .

represents the kth order derivative with respect
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B. Linear Properties of DTM

NS(')_ Original Functions Transformed Functions

L z(x) =u(x) £ v(x) Z(k)=U(Kk)xV (k)

2. | z(x) = au(x) Z(k)=aU (k)

3 | 200 = d”i") Z(K) = (k +)U (k+1)

4. | 2(0=2 d”(zx) Z(K) = (K +D)(k +2)U (k +2)

s | 200 g U(X) Z(k)=(k +1)(k(k++2n)]). ........ (k +m)U (k +m)
k U (k +m)

6. | z(X) =u(x)v(x) Z(k)=ZU(m)V(k—m)

7. | 200 =4, (U, ()5 (X)..., (%) Z Z Z ZU (kU Uj (ks —k,).- U, (k =k, )

Ky 1=0k, =0 k,=0k=0

8. | 2 = x" Z (k) = 5(k —m) , where 5(k_m):{(1) :;::2

9. | z(x)=oax" Z(k)=ao(k—m)

10. | z(x) =(@+x)" Z(k)= m(m_l)”k‘fm_kﬂ)

| _Uk-1

11. | z(x) = {u(t)dt 2(k) ==

12. | z(x)=¢" Z(k) = i

13. | z(x) =™ Z(k)= Xk

14. | z(x) =sin(oxX+ o) Z(k)= k—klsin(?ﬂx)

15. | z(X) = cos(wXx + o) Z(k) = % Cos(l%” +a)

I1l. FINDINGS OF THE STUDY

A. Proof of Linear Properties
1. z(x)=u(x)xv(x)

Proof:

200~ [209] - w00 2v00] = 5[ 2

_1fd* 1)d* —UK)£V (K)
- |<!L|><k U(X)L " k!{dx" V(X)l_o

= Z(K)=U (k) £V (K)

I
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2. z(X) =au(x)

Proof:

dk
Z(K) =D [2(0] = D, [au(x)] = %[ =z {au(x)}}

x=0
1
= k'{d - (x)} O—OLU(k)
2 Z (k) =aU (k)
3. z(x):%
Proof:
B du(x)]_1]d“ [d .
Z(k)—ﬂk[z(x)]:_@([ L;XX }_E{J{EU(X)HX_O_E[D (Du)]X:O
1 r ke 1| d 1 (k+1)1 g+
= — D = — = —
k![ (u)l(:o k!{dxk“u(x) o Kkl(k+1)! dx"”u(x) o

_(k+1)k| 1 dk+l B 1 dk+l
k! (k1) o1 X_o_(k+l) +1)! 109 .

=(k+1)D,[u(¥)] _, =(k+1)U (k+1)

2 Z(K) = (K +DU (k +1)

a1 1[d* [ d?
proot: Z(K) =D, [2(x)] = ::){d u( )} k,{a{— (X)H

1 dk+2
=%[Dk(D2 9], :_[Dm(“)] kl{d 2 U(X)}Xo
_i(k+2)![ qk+2 u(x)} 7 :(k+2)(k+1)k!(k 1 ) {dk”

= u(Xx
K!(k+2)! dx k! 2)!1] dx*? ()L

=(k+2)(k+1)(k+12)!{jxk; u(x)} = (ke 2) (k1) B [u]

=(k+2)(k+1)U (k+2)

2Z(K) =(k+1)(k+2)U (k+2)
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M}_i{d o (xﬂx_o [0t (em)]

Proof: Z(K) = D, [Z(X)] =D, |: dx™ k1| dxk

1 o _1 gkm __(k+m) gk
_E[D (u)]x—o_ﬁ{dx“m u(x)} L k!(k+m)! {dxk+m (X)LO

_(k+m)(k+m-1)---(k+m-m)(k—-1)---21 1 gl
N k! (k+ m)!|:dxk+m U(X):|X_0

= (k+m)(k+m_1)|;.!.(k+m_m+1)k!'(q<+m [U(X)]x=0

_ (k+1)(k+2)---(k+m)k!U (k+m)
k!
=(k+1)(k+2)---(k+m)U (k+m)

2 Z(K)=(k+1)(k+2)---(k+m)U (k +m)

6. z(X)=u(x)v(x)

Proof:
- 209=2[200] - 2, [u()v (0] - (v} | 0" (@],
k k_1)(Dk‘zu).D2v+...+k(Du).(Dk‘lv)+u.(Dkv)}

:i{(Dku).v+k(Dk‘lu).Dv+(T

k!
[by Leibnitz’s Theorem]

DKZUJ% DV +...

:[%Dk )1 D VJ{(k l)'D“uj%D1V+((k_12)!
(3o (oo

g((kf.)! DUJ(% D'VJ —3> U (k=D (1)

U (m)V (k=m) =30 (mv (k-m)

3

(k) = ZU (Mm)V (k —m)

£ Z(X) = ul(X)uz (X)u3(X)---un (X)

Proof:
Case I: n=2 i.e., product of two functions:
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2(x)= u1(><)u (%)

D [2(0)] = ZU m)U, (k —m)
When m — Kk,
D [2(x)]= ZU (k—k,)

Case Il: n=3 i.e., product of three functions:

z(x)=u, (X)u, (x)uy(x)
@[z(x)]:%“u(l)u k —

where U (I) = ﬂ [Ul(X)UZ (X)] and
(k=) =2, [(0]

“ B [20]= 2, 2 Uy (m (1-m)Us (k1)

by using Case I.

=0 m=

m—-k,l —>k,

2(9)]= Zk: iUl(kl)Jz (k, ~k; U

kp=0 k=0

When
3(k_k2)
Case lll: n=4 i.e., product of four functions:
z(x) =uy (Xx)u, (x)us (x) U, (X)
K
D [209]=2_U (p)U, (k—p),
p=0
where U (p) = D, [ul(x)uz (X)u, (X)] and
Uy(k=p) =D, [u(x)].

Zklzp:iu (k W, (k,~k,)U

=0k,=0k;=0

Uy (p-k, W, (k-p)

=

When p =K, ,

a1 ]ZZZUK)JH

ky=0k,=0k =0

(k=K 0, (k=)

General Case: Proceeding as above, for
z(x)=u, (X)u, (X)uz(x)---u, (X) we obtain
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Z(k)=ﬂk[z(x)]:kz kZ "';;Ul(kl)uz(lﬁ kl)Ua(ks'kz)'“Un(k'kn-l)
10k K0k
8. Z (X) — x™
Proof: We have,
my_ d* d?

D* (x™) = (x") =m 7= (x"7)

dk_z m—2
=m(m—1)W(x )

dk m .

=m(m—1)---(m-k— 1)dka(x “)
_[m(m-1)---21=m! if k=m
B 0 if k=m

2 Z(K) =D, [2(9)] ——[Dk(xm)jx )

3 m(m—1)---2.1=m! if k=m

_E{ 0 if k=m
1 ifk=m

2{0 if k=m

=o(k—m)

2 Z(K) = 5(k —m)

9. z(x)=ox"

Proof: We have,

K dx d“? m-1
D! (x7) = gy (x) =M g (x)
=m(m- 1) d (x”“z)

:m(m—l)---(m—k_—l) g

dx*<m (Xmik)
:{m(m—l)---Z.lzm! if k=m
0
2 Z(K)=D[z(x)] =
{m(m 1)--

if K=m

[Dk(ax )]
2.1 m! if k=m
if K#m

=Qo—

k! 0
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{1 if kK=m
= ;
0O if k#m
=oc5(k—m)

2Z(K) = o 5(k —m)
10. z(x)=(1+x)"

proof: Z(K) = ﬂ( [Z(X)] =D, [(1-" m)m}

- S aom |

:i_i_r{m(m—l)---(m—r+l)(l+ x)mr}} :

k1| dx "

=_![m(m—1)---(m—k+1)(1+ x)mfk]X=O
= = m(m-1)(m=2)-(m—k+1).1

m(m-1)(m-2)---(m—-k+1)
k!
m(m-1)---(m—-k +1)
k!

2Z(K) =

11. z(x)=JX.u(t)dt
Proof: Z(K) = D, [Z(X)] :_‘i){ ju(t)dt }

Ao
e )

(k l) dkl
kI (k-1)! lek-1

_(k-1) 1 { d<*

k! (k=1)!] dx**

1Ix=0

U(X)}
u(x)}

55

e (100) I PPy

U (k —1)
k

2Z (k) =

12, z(x)=¢"

Proof: Z(k) = "q [Z(X)] - E[Dk (ex )]
ale

x=0

1 1
=—e =—1=—
kI k! k!
1
z(k)=15
13, z(x)=¢e"
1
Proof: Z(k) :"q [Z(X)] :E[Dk(ekx)]m
1[d" ] = L ke
:E[We}\ :|X=O - k![k € :|X:0
_i k AX _ }\'k 0 _ xk 7\‘k
- k|7L I: ]X:O F _H 1_F
}\‘k
Z(k)=17
14, z(x)=sin(wx+a)

Proof: Let Z(X):y:Sin(COX+(X,)

. (z
~ Y, =mCos(@X+a) = wSIn(E+wx+aj

Ly, = cos[%+@x+aJ:mzsin(%+wx+aj

v rr
-'-yr:(x) S 7+(1)X+(1

ence 260 = [20] - 1] £, fonon )]

x=0
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1 | . (kr 1 . [kﬂ' j
=—0"|sin| —+oX+a = —“sin| —+a
k! 2 K 2

k

-'-Z(k)=0;—sin(k7”+a)

15. z(x)=cos(wx+o)

Proof:

Let, Z(X)=y=cos(oX+a)

. T
Y, =—osin(oXx+o) :cocos(5+cox+aj

oo y

s - (7 2 2
, =—m"SIN E+(0X+a =@®" COS 7+(DX+OL

. rr
“Y =0 COS(?+03X+0L]

Hence, Z(k) =9, [Z(X)] = %{%{COS(QXJW‘)}}

x=0

=l(x)k cos k—ﬂ+COX+OL =i0)kcos k_ﬁ+a
k! 2 o K! 2

k

o) kz
~Z (k) =—cos(—
(0 = T cos(-+0)

IV. CONCLUSION

This study has tried to prove the linear properties whose
proofs have been long ignored in the DTM literature. Most
authors assume the knowledge of these properties, so they
do not bother to prove the properties. The properties are
therefore proved to serve as a reference for any work that
would want to use the properties without proofs. This work
argues that we can obtain the solution of differential
equation through these proofs by using the DTM.
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