
Asian Journal of Engineering and Applied Technology

ISSN: 2249-068X (P) Vol. 8 No. 2, 2019, pp. 37-40
© The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajeat-2019.8.2.1141

An Intelligent Multimedia Data Encryption and Compression and

Secure Data Transmission of Public Cloud

Sheik Saidhbi
Assistant Professor, Department of Information Systems, Faculty of Informatics, University of Gondar, Ethiopia

E-Mail: sfajju.syed@gmail.com

Abstract - Data compression is a method of reducing the size of

the data file so that the file should take less disk space for

storage. Compression of a file depends upon encoding of file.

In lossless data compression algorithm there is no data loss

while compressing a file, therefore confidential data can be

reproduce if it is compressed using lossless data compression.

Compression reduces the redundancy and if a compressed file

is encrypted it is having a better security and faster transfer

rate across the network than encrypting and transferring

uncompressed file. Most of the computer applications related

to health are not secure and these applications exchange lot of

confidential health data having different file formats like HL7,

DICOM images and other audio, image, textual and video data

formats etc. These types of confidential data need to be

transmitted securely and stored efficiently. Therefore this

paper proposes a learning compression- encryption model for

identifying the files that should be compressed before

encrypting and the files that should be encrypted without

compressing them.

Keywords: Encryption, Compression, Data Security, ECB

I. INTRODUCTION

Data compression is a method of reducing the size of the

data file so that the file should take less disk space for

storage [11]. The file that contains redundancy gets reduced

by compression. In lossy data compression algorithms there

is loss of original data while performing compression [20].

In computer science and Information technology, a data

encoding method in which the data is compressed by losing

some amount of data is lossy compression.

A. Lossless Data Compression Algorithms

In case of lossless data compression algorithm there is no

data loss while compressing a file, it guarantees to

reproduce the exactly same data as input. If data loss is not

desirable the lossless data compression algorithms should be

used. Some of the peculiar examples include executable

text documents, programs and source codes etc. Some of the

image file formats also uses lossless compression.

Huffman Code-It assign more bits to symbols appear less

and fewer bits to the symbols that occur more frequently.

Every Huffman code having the same average code length.

It optimizes the single byte at time.

1. Deflate- It combines the LZ77 and Huffman code for

compression in which LZ77 optimizes sequence of

bytes whereas Huffman works on single byte.

2. LZ4-It lossless data compression algorithm that is

primarily focused on compression and decompression

speed. The algorithm gives a slightly worse

compression ratio than others.

3. LZF- It is a fast compression algorithm that takes very

little working memory and code space.

4. Zip- Zip is a lossless compression Algorithm. Zip

compress as well as archive the file. Content of the .Zip

file can be a single file of group of files enclosed in a

folder.

B. Cryptographic Algorithms

Symmetric key cryptographic ciphers come in two types,

stream and block ciphers. Stream ciphers works on bits

stream or bytes stream. Stream ciphers are used for securing

data of terminal and wireless applications. Block ciphers

performs encryption or decryption on fixed size block of

data. In network applications block ciphers are used for

transmission of files of huge sizes which require high

security. Deciphering cipher text without knowing the key is

called cryptanalysis. Cryptanalysis of block ciphers is

difficult compared to stream ciphers [9]. Hence in most of

the applications, block ciphers are used for providing better

security than stream ciphers.

Block ciphers come in various block modes. Block mode

for cipher algorithm determines how cipher text blocks are

created by encryption from plaintext blocks and vice versa.

ECB, CBC, CFB, OFB, PCBC and CTR etc are commonly

used block modes [9]. ECB has poor security properties

since encryption of a block with a fixed size always yields

the same result; hence susceptible to dictionary attacks,

replay attacks etc. In case of CBC first plaintext block is

XORed with IV and remaining all plaintext blocks are

XORed with previous cipher text blocks; while in case of

PCBC operation on first plaintext block is similar to CBC

but remaining all plaintext blocks are XORed with previous

plaintext as well as previous cipher text block [9] [12].

In paper [15], the author has simulated different symmetric

key cryptographic algorithms like AES, DES, 3-DES and

Blowfish. The simulation was done on 0.5 to

20MB data blocks. The simulation results show that the

Blowfish yields better results than other symmetric key

37 AJEAT Vol.8 No.2 April-June 2019

(Received 7 March 2019; Revised 31 March 2019; Accepted 2 May 2019; Available online 10 May 2019)

cryptographic algorithms when it comes to processing

power. AES yield poor results as it requires high processing

power. Initially all the simulations were taken in ECB mode

and it was observed that Blowfish takes comparatively less

processing time than others. AES takes relatively higher

time when the block size is high. It was also concluded that

3-DES will always take more time as compared to 3-DES as

it involves 3 phases of encryption. Another simulation was

done on all the symmetric key algorithms in CBC mode. It

was concluded that CBC took more time for performing

encryption than ECB mode.

II. DESIGN OF MODEL OF COMPRESSION

ALGORITHM FOR DATA TYPE ANALYSIS

Every compression algorithm has different level of

compression for different files. For example, there are two

compression algorithms A and B. Suppose compression

algorithm A has compression ratio of 30% for X file. It is

not necessary that compression algorithm B will have same

compression Ratio for X file. Compression Algorithm B can

give more, less or no compression at all. This sub section

provides information on calculating the compression ratio

for different compression algorithms. The following

algorithm describes the process for calculating compression

ratio for a file.

Procedure Name: Compress

Input Parameters: input File: Name of input file for

compression

Start Procedure

Array = Read all the compression algorithm in Array

Read input file for compression

Determine the data type from file extension

Find uncompressed size of file for i = 1 to Array Length

Compress file by Compression Algo[i] Calculate

compressed file size;

Calculate compression Ratio by eq. 1

End for

Write the compression ratio to database

End Procedure

All cipher algorithms are implemented using sun

provider except skipjack, which is implemented using

Bouncy Castel provider. Fo llowing is the piece of code

used for analysis:

// BC = Bouncy Castel Provider

cipher = Cipher.getInstance(algorithmName, “BC”);

// for encryption

operation = Cipher.ENCRYPT_MODE;

//Initializing cipher cipher.init(operation, secretKey);

//Performing Encryption

encryptOutLength = cipher.update(inputBytes, 0,

bufferSize, outputBytes);

encryptOutLength = cipher.doFinal(inputBytes, 0,

inLength);

// for decryption

operation = Cipher.DECRYPT_MODE;

//Initializing cipher cipher.init(operation, secretKey);

//Performing Decryption

decryptOutLength = cipher.update(inputBytes, 0,

bufferSize, outputBytes);

decryptOutLength = cipher.doFinal(inputBytes, 0,

inLength);

From the related works, it is realized that none of the work

did a very detailed analysis of the performance of various

symmetric algorithms, on various parameters of different

type of files. In order to select the most suitable

cryptographic algorithm for encryption, following test cases

are considered to analyze the time taken for encryption by

various cryptographic algorithms.

A data file format represents the standard for encoding the

information to be stored in computer file. This case study is

taken to check whether the encryption has dependency

on type of data or not. Different data type files like audio,

image, textual, video and health data file format like

DICOM of nearly 50MB, and 100MB in size are chosen and

encryption time of different cipher algorithms is calculated

for these data.

A. Data Files of Same Type with Different Sizes

This case study is taken to ensure once again the

observations obtained from case study 1, that encryption

time depends on number of bytes in the file. In this study is,

different files of same types but different sizes are given for

encryption and estimated the encryption time. For all

executions, key size and block mode are kept at bare

minimal parameters.

Table I gives the details about the files used for all

executions and Figure 3, 4 and 5 show the execution results.

38AJEAT Vol.8 No.2 April-June 2019

Sheik Saidhbi

TABLE I EXECUTION PARAMETERS FOR FILES OF DIFFERENT SIZES

File Type
Varying Parameters

(Data Size)

Constant

Parameters

AIFF
10.7MB, 50MB,

100MB

Data Type, Key

size, Block Mode

AVI
50MB, 100MB,

482MB

DICOM

14.9MB, 50.3MB,

115MB,

151MB

Fig. 1 File size Vs Encryption time for AIFF file of different sizes

Fig. 2 File size Vs Encryption time for AVI file of different sizes

Fig. 3 File size Vs Encryption time for DICOM file of different sizes

TABLE II ENCRYPTION RATE FOR FILES OF DIFFERENT SIZES

File

Type

Size

(In MB)

Encryption Rate In (MB/sec)

AES

128

DES

56

3-DES

112

RC2

40

Blowfish

32

Skipjack

80

RC4

40

AIFF

10.7 109.18 39.43 13.61 45.06 80.63 28.14 268.12

50 109.95 39.92 13.15 45.68 81.47 28.93 270.66

100 110.07 38.55 13.11 45.71 81.81 28.54 268.96

AVI

50 107.83 39.49 13.14 45.04 79.62 28.93 265.52

100 109.3 38.8 13.14 45.11 79.19 28.54 270.72

482 108.74 38.49 13.52 45.09 79.22 28.46 265.55

DICOM

14.9 107.65 38.93 13.45 45.46 80.61 28.19 266.31

50.3 108.48 39.17 13.53 45.63 81.19 28.28 267.76

115 108.69 39.03 12.99 45.24 80.18 28.28 271.34

151 108.21 38.61 13.32 45.15 79.91 28.23 270.47

Average 108.8 39.04 13.3 45.32 80.383 28.452 268.5

B. Files with Different Densities of Data

Encryption rate is evaluated for different files, a sparse

AIFF file of 69MB and a dense AIFF file of 58.5MB. For a

cipher algorithm, key size and block mode are kept at bare

minimal parameters. The results of execution are shown in

Table III.

C. Cipher Algorithms with Different Block Modes

Security of cipher algorithm also varies according to block

cipher modes. Different block cipher modes are used for

different applications. For example PCBC is used in

WASTE and Kerberos v4. Security levels may differ

according to type of application and can be classified as:

This study is to check the encryption time variation with

respect to block cipher modes. All block cipher algorithms

have been executed for different block modes with

PKCS#5 padding scheme on 50.5MB DICOM file. The

key size for particular block cipher algorithm is kept at the

bare minimal value. The various block modes mentioned in

Table II are used for evaluation. The Figure 4 shows the

block cipher variation for AES 128 and Figure 5 shows the

result of execution for all encryption algorithms.

39 AJEAT Vol.8 No.2 April-June 2019

An Intelligent Multimedia Data Encryption and Compression and Secure Data Transmission of Public Cloud

TABLE III ENCRYPTION RATE FOR SPARSE AND DENSE DATA FILE

Algorithm

Name

Sparse

(72000118 Bytes) AIFF file

Dense

(61392454 Bytes) AIFF file

Encrypt

Time(ms)

Encryption

Rate(MB/s)

Encrypt

Time(ms)

Encryption

Rate(MB/s)

AES 128 634 108.28 540 108.40

DES 56 1801 38.11 1537 38.08

3-DES 112 5076 13.52 4365 13.41

RC2 128 1520 45.16 1285 45.55

Blowfish 128 854 80.38 723 80.96

Skipjack 128 2386 28.77 2042 28.66

RC4 128 253 271.35 216 271.01

Fig. 4 Block Mode Variation of AES 128 for 10MB files

III. CONCLUSION

After analysis of all parameters, AES was found to be most

suitable encryption algorithm having encryption rate of

108MB/sec in ECB mode. AES was used in the proposed

compression-encryption model. A compression-encryption

model was proposed for identifying the files that should be

compressed before encrypting and the files that should be

encrypted without compressing them. A formula was

derived imperially to determine best suitable compression

algorithm that should be used for compressing the file

according to data type and data size to reduce the overhead

of time for compression and to increase the efficiency and

security to data that is being transferred.

REFERENCES

[1] A. L. Jeeva, Dr. V. Palanisamy and K. Kanagaram, “Comparative

Analysis of Performance Efficiency and Security Measures of Some

Encryption Algorithms”, International Journal of Engineering
Research and Applications (IJERA), Vol. 2, No. 3, pp.3033-3037,

May-Jun 2012.

[2] S. Soni, H. Agrawal and M. Sharma, “Analysis and comparison

between AES and DES Cryptographic Algorithm”, International

Journal of Engineering and Innovative Technology, Vol. 2, No. 6, pp.
362-365, Dec. 2012.

[3] Nidhi Singhal and J. P. S. Raina, “Comparative Analysis of AES

and RC4 Algorithms for Better Utilization”, International Journal of
Computer Trends and Technology, Vol. 2, No. 6, pp. 177-181, July-

Aug 2011.

[4] Jawahar Thakur and Nagesh Kumar, “DES, AES and Blowfish:
Symmetric Key Cryptography Algorithms Simulation Based

Performance Analysis”, International Journal of Emerging

Technology and Advanced Engineering, Vol. 1, No. 2, pp. 6-12, Dec.
2011.

[5] Allam Mousa and Ahmad Hamad, “Evaluation of the RC4 Algorithm

for Data Encryption”, International Journal of Computer Science &
Applications, Vol. 3, No. 2, pp. 44-56, June 2006.

[6] Aamer Nadeem, M. Younus Javed, “A Performance Comparison of

Data Encryption Algorithms”, First International Conference on
IEEE Information and Communication Technologies (ICICT), pp. 84-

89, 27-28 Aug. 2005.

[7] Kofahi, N.A, Turki Al-Somani, Khalid Al-Zamil, “Performance

evaluation of three Encryption/Decryption Algorithms”, IEEE 46th

Midwest Symposium on Circuits and Systems, pp. 790-793, 30-30

Dec. 2003.
[8] Jonathan Knudsen, Java Cryptography, 2nd Edition, O’Reilly, 2011.

[9] William Stallings, Cryptography and Network Security, 5th Edition,

Pearson, 2012.
[10] O.S. Pianykh, Digital Imaging and Communications in Medicine

(DICOM), 1st Edition, Springer, 2008.

[11] John Miano, Compressed Image File Formats, 1st Edition, Addison
Wesley Longman, Inc, 1999.

[12] Atul Kahate, Cryptography and Network Security, 2nd Edition, Tata

McGraw Hill, 2012.
[13] V.K. Pachgare, Cryptography and Information Security, 1st Edition,

PHI Learning PVT LTD, 2008.

[14] Dworkin, M. NIST Special Publication 800-38A. Recommendation
for block cipher Modes of operation: Modes and techniques, Dec.

2001.

[15] Simar Preet Singh and Raman Maini, “Comparison of Data

Encryption Algorithms”, International Journal of Computer

Science and Communication (IJCSC), Vol. 2, No. 1, pp. 125-127,

January-June 2011.
[16] Lalit Singh and R.K. Bharti, “Comparative Performance Analysis of

Cryptographic Algorithms”, International Journal of Advanced
Research in Computer Science and Software Engineering

(IJARCSSE), Vol. 3, No. 11, pp. 563-568, November 2013.

40AJEAT Vol.8 No.2 April-June 2019

Sheik Saidhbi

