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Abstract - The present study deals with the analysis of large 
deflection of cantilever beams for various cross sections with a 
transverse load at free end. The aim of this analysis is to study 
the vertical and horizontal displacement behaviour of leaf 
springs which is traditionally modeled as cantilever beams of 
variable cross section. Besides the free end displacement, the 
variation of stress, strain and the bending moment of the beam 
are obtained by the technique of minimization of total potential 
energy principle. The displacement functions are approximated 
by linear combination of sets of orthogonal coordinate functions, 
developed through Gram-Schmidt scheme and substituted in 
the governing equilibrium equation. The final solution of the 
large displacement geometric nonlinear problem is obtained 
iteratively with the help of matlab computaional simulation. It 
is observed that the free end displacements and the maximum 
stress at fixed end are greatly affected by the geometry of the 
beam cross section. The present computational method has been 
validated and some new results have been furnished. 
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I. IntroductIon

Leaf springs are the simplest form of spring, commonly 
made out of flat plates and used for the suspension in 
vehicles. The advantage of leaf spring over helical spring is 
that, they carry lateral loads, brake torque, driving torque etc, 
in addition to shocks. Multi-leaf springs consist series of flat 
plates, which are held together by means of two U-bolts and 
a centre clip. The suspension characteristics of such springs 
are highly nonlinear and leaf springs theory aims to find the 
optimized shapes of the leaves. 

Deflections and stresses for non-linear bending are 
discussed and compared with those of a traditional leaf spring 
by Rajendran and Vijayarangan [1]. Design and manufacture 
of automotive leaf spring using functionally graded and 
composite materials have been addressed by several 
researchers [2, 3]. Sugiyama et al [4] reported development 
of nonlinear elastic leaf spring model for multi body vehicle 
systems. Rahman et al [5] carried out non-linear geometric 
analysis of parabolic leaf spring and extended the study for 
inelastic deformations [6].

Fig. 1 Deflected shape of the beam

The geometrically nonlinear large deflection problem 
of cantilever beam had been solved classically by Bisshopp 
and Drucker [7]. Wang [8, 9] had proposed a numerical 
method for analyzing the nonlinear beam bending problem 
for concentrated and uniformly distributed load. Banerjee 
et al. [10] used analytical and numerical approaches to 
study large deflection of cantilever beams with geometric 
non-linearity by using non-linear shooting and adomian 
decomposition methods. Almeida et al. [11] used a tailored 
Lagrangian formulation for functionally graded cantilever 
beams of rectangular and hollow circular cross-section. In 
this paper, we investigate numerically a leaf spring system in 
which the cumulative effect of geometric nonlinearities are 
considered. The study undertakes a non-uniform cantilever 
with nonlinearity due to large deflection. The mathematical 
formulation is based on a variational method using total 
potential energy functional and solution is sought through 
Galerkin’s assumed mode method. 

II. mathematIcaL formuLatIon

Beam bending analysis based on the Bernoulli-Euler 
theory cannot be applied in the case of large deflections. 
Hence an iterative method using this simple beam theory has 
been implemented with appropriate length correction in each 
load step. Since the beams are quite slender for the present 
case, only pure bending is considered in this study ignoring 
the effect of shearing stresses. A schematic representation of 
bending curve for a cantilever beam with a point load P is 
shown in Fig. 1, along with its original configuration. 

The governing differential equation of the beam system 
in question is derived by using minimization of total potential 
energy. Mathematically this is represented as δ(π) = 0, where 
δ is the variational operator and π is the total potential energy. 
Noting that  , the equation can be expressed as,

  (1)

The expression for strain energy of the beam is,

(2)
The expression of the potential energy, arising from the 

work done by the external uniform (p) and concentrated (P) 
load at the tip of the cantilever beam, is given below.

(3)

Substituting the expressions of U and V in Eq. (1), and 
after carrying out some mathematical manipulations, we get
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 (4)

where   is the normalized length coordinate ( ).The 
displacement functions   in Eq. (4), can be approximated 
by a linear combination of sets of orthogonal coordinate 
functions as 

   ,   i=1, 2, ..., n.          (5)

The set of orthogonal functions   are developed 
through Gram-Schmidt scheme, in which a starting function 
is used to generate the higher order orthogonal functions. The 
starting function   necessary in the first hand, is selected 
by satisfying the boundary conditions at fixed and free end as 
given below.

 = 0  and   

   and   (6)

Substituting Eq. (5) in Eq. (4) yields the solution for the 
unknown displacement field w. 

Fig. 2: Representation of bending curve for an intermediate load step

A. Effect of Stretching 

The mathematical formulation as presented above is 
applicable for small deflection only , beyond 
which strain-displacement relations become non-linear. In 
the present paper, the effect of geometric nonlinearity is 
implemented iteratively, in which the total load on the beam 
is imposed incrementally. In each load step, a correction on 
projected beam length is carried out such that the length of the 
deflection curve remains constant to the original straight length 
of the beam. This is shown through a schematic representation 
of the bending curve in Fig. 2. The elemental beam length 

shown in figure is given by  
 
  and 

this is integrated to obtain the stretching of beam length. 

 
. The 

stretching   and deflection w produces horizontal ( ) 
and vertical ( ) components.  is determined to obtain the 
effective beam length   for the next incremental load step, 
i.e.,  . However, in each load step, analysis 
is carried out by following small deflection beam theory as 
presented in the previous section. 

Fig. 3 Prismatic cantilever beam under combined loading

Fig. 4 Cantilever beam with linear variation in thickness (a) front view and 
(b) top view

Fig. 5 Cantilever beam with quadratic variation in thickness (a) front view 
and (b) top view

AJEAT  Vol.1 No.2  July - December 201245

Non-Uniform Leaf Springs with Geometric Nonlinearity



Fig. 6: Cantilever beam with fourth order variation in thickness (a) front 
view and (b) top view

III. Results And Discussions

The present study deals with the analysis of large 
deflection of cantilever beams for various rectangular cross 
sections under transverse load. The first configuration consists 
of a prismatic bar whereas in the second, thickness varies 
linearly and width is varied to maintain constant area of the 
cross section. The third and fourth configurations correspond 
to quadratic and fourth order variation in thickness with 
corresponding variation in width for constant cross-sectional 
area. The dimensional details of the different types of beams 
are shown in Figs. 3-6 (dimensions shown in mm).

Table I numerIcal valueS of loadIng correSPondIng To load 
ParameTer l2(P+Pl)/e I

m
) =10.

Validation of present results for a prismatic cantilever 
beam is carried out with the analytical results of Wang [8, 9] 
for concentrated and uniformly distributed load and shown in 
Fig. 7 (a, b). The agreements of the results establish the validity 
of the present method. Figure 7 (c) shows characteristic curve 
for prismatic beam under combined loading. 

Variation of 𝛿/L and l/L with PL2/E , pL3/E   and 
L2(P+pL)/E ) for the concentrated, uniform and combined 
loads are shown in Figs. 8-10, for various configurations of 
beam cross section.

It is observed from the figures that changes in values 

of (l/L) and ( /L) are more pronounced for beams with 
prismatic, linear, quadratic and fourth order variation in 
thickness. It should also be noted that the changes are positive 
(increasing) and negative (decreasing) respectively with (l/L) 
and ( /L). The observation is highlighted through numerical 
values in table 2 for concentrated loading only but the trends 
remain same for all types of loadings. 

The bending stress induced in the parabolic beam is 
calculated and validated with the results of Rahaman [5] but 
they are not furnished here to maintain brevity. The results 
for constant width beam, as they are commonly used in leaf 
springs, would be more meaningful from practical application 
view point and are also omitted in view of space limitation. 

Table II  value of (l/l) and (𝛿/l) correSPondIng To l2(P+Pl)/e ) 
=10 for concenTraTed loadIng
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Fig. 7 Variation of 𝛿/L and  l/L with  L2(P+pL)/E ) for (a) concentrated 
load   (b)  uniformly distributed load   and (c) under combined loading in 

prismatic cantilever beam. Validation of present results with Wang [8, 9] is 
also indicated in (a, b) for concentrated and uniformly distributed load

Fig. 8 Variation of 𝛿/L and  l/L with  L2(P+pL)/E )  for (a) concentrated 
load   (b) uniformly distributed load and (c) under combined loading in 

linear cantilever beam
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Fig. 9 Variation of 𝛿/L and  l/L with  L2(P+pL)/E )  for (a) concentrated 
load   (b) uniformly distributed load  and (c) under combined loading in 

quadratic cantilever beam

Fig. 10 Variation of 𝛿/L and l/L with L2(P+pL)/E ) for (a) concentrated 
load (b) uniformly distributed load  and (c) under combined loading in 

fourth order cantilever beam

Iv. concLusIon

An energy based variational method is proposed to analyze 
geometric nonlinearity of non-uniform leaf springs following 
the concept of updated Lagrangian analysis. The system is 
formulated as cantilever beam problem in which the effect 
of geometric nonlinearities are considered incrementally. 
The fundamental formulation is based on a variational 
method using total potential energy functional and solution 
is sought through Galerkin’s assumed mode method. The 
final solution of the large displacement geometric nonlinear 
problem is obtained iteratively with the help of MATLAB 
computaional simulation. The present computational method 
has been successfully validated with existing results and 
some new results have been furnished. The present method, 
being based on an iterative computational technique, may be 
used to extend the problem in the area of thermo-elasticity 
and material non homogeneity.  

Nomenclature
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