
Asian Journal of Engineering and Applied Technology
ISSN: 2249-068X (P) Vol.10 No.1, 2021, pp.22-28

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajeat-2021.10.1.2724

Image Compression Techniques Using Linear Algebra with
SVD Algorithm

S. Karthigai Selvam1 and S. Selvam2

1Assistant Professor, Department of Mathematics,
2Head and Assistant Professor, Department of Computer Applications

1&2N.M.S.S.V.N. College, Madurai, Tamil Nadu, India
E-mail: s.karthic4@gmail.com, s.selvammphil@gmail.com

Abstract - In recent days, the data are transformed in the form
of multimedia data such as images, graphics, audio and video.
Multimedia data require a huge amount of storage capacity
and transmission bandwidth. Consequently, data compression
is used for reducing the data redundancy and serves more
storage of data. In this paper, addresses the problem
(demerits) of the lossy compression of images. This proposed
method is deals on SVD Power Method that overcomes the
demerits of Python SVD function. In our experimental result
shows superiority of proposed compression method over those
of Python SVD function and some various compression
techniques. In addition, the proposed method also provides
different degrees of error flexibility, which give minimum of
execution of time and a better image compression.
Keywords: Image Compression, Singular Value Decomposition,
MSE, Lossy Image Compression, PSNR

I. INTRODUCTION

The Singular Value Decomposition (SVD) is a
generalization of the Eigen-decomposition used to analyze
rectangular matrices. It plays an important role for many
exciting real-world applications such as Mathematical
models, physical and biological processes, data mining,
search engines to rank in huge databases, including the
Web, image processing etc. The purpose of this paper is to
present the SVD applied to the image compression.

The main idea of image compression is reducing the
redundancy of the image and the transferring data in an
efficient form. The image compression takes an important
place in several domains like web designing, in fact,
maximally reduce an image allows us to create websites
faster and saves bandwidth users, it also reduces the
bandwidth of the servers and thus save time and money.
Here, we used two aspects: image size in pixels and its
degree of compression. The main goal of such system is to
reduce the storage quantity as much as possible while
ensuring that the decoded image displayed in the monitor
can be visually similar to the original image as much as it
can be.

II. EXISTING METHODS

In past few years, various image compression schemes and
their applications in image processing have been proposed.
In this section, a empirical review of few important

contributions from the existing method is presented. In
general, there are two approaches for image compression:
lossy or lossless [1,2]. A lossless compression is an image
compression technique that allows no loss of data, and
which retains the full information needed to reconstruct the
original image. This type of compression is also known as
entropy coding because of the fact that a compressed signal
is generally more random than the original one and the
patterns are removed when a signal is compressed.

The lossless compression can be very useful for exact
reconstruction of images. The compression ratio provided
by this kind of methods is not sufficiently high to be truly
used in image compression. Lossless image compression is
particularly useful in image archiving as in the storage of
legal or medical records. The lossless image compression
methods include: Bit-plane coding, Huffman coding [3],
Run-Length coding and Entropy coding.

Lossy compression is another type of image compression
technique in which the original signal cannot be exactly
reconstructed from the compressed data. The reason behind
this is that much of the detail in an image can be discarded
without greatly changing the appearance of the image. In
lossy image compression, even a very fine detail of the
images can be lost, but ultimately, the image size is
drastically reduced.

Lossy image compressions are useful in many applications
such as broadcast television, video conferencing, and
facsimile transmission, in which a same amount of error is
an acceptable trade-off for increased compression
performance. Among methods for lossy compression, we
find: Transform coding Fourier-related transform, Fractal
compression [4], Discrete Cosine Transform [5,6] and
Wavelet transform.

Generally, SVD is a lossy compression technique which
achieves compression by using a smaller rank to
approximate the original matrix representing an image.
Furthermore, lossy compression yields good compression
ratio comparing with lossless compression while the lossless
compression gives good quality of compressed images.

22AJEAT Vol.10 No.1 January-June 2021

(Received 24 February 2021; Revised 14 March 2021; Accepted 31 March 2021; Available online 8 April 2021)

According to the state-of-the-art, there are several works
suggested to use the SVD with other compression methods
or with variation of SVD. Awwal et al., [7] presented new
compression technique using SVD and the Wavelet
Difference Reduction. The WDR used for further reduction.
This technique has been tested with other techniques such as
WDR and JPEG 2000 and gives a better result than these
techniques. Furthermore, using WDR with SVD enhance
the PSNR and compression ratio.

A technique based on Wavelet-SVD, which used a graph
coloring technique in the quantization process, is presented
in [8]. This technique worked well and enhanced the PSNR
and compression ratio. The generated compression ratio by
this work ranged between 50-60%, while the average PSNR
ranged between 40-80db.

Ranade et al., [9] suggested a variation on SVD based
image compression. This approach is a slight modification
to the original SVD algorithm, which gives much better
compression than the standard compression using SVD
method. In addition, it performs substantially better than the
SVD method. Typically, for any given compression quality,
this approach needs about 30% fewer singular values and
vectors to be retained.

The technique given by El Abbadi et al., [13], proposes to
use SVD and MPQ-BTC, the input image is compressed by
reducing the image matrix rank, by using the SVD process
and then the result matrix compressed by using BTC.
Following the sole objective of image compression using
SVD, the most problem is which K rank to use for giving a
better image compression. For this reason, the method
presented in El Asnaoui et al., [14], introduces two new
approaches: The first one is an improvement of the Block
Truncation Coding method that overcomes the
disadvantages of the classical Block Truncation Coding,
while the second one describes how to obtain a new rank of
SVD method, which gives a better image compression.

III. IMAGE COMPRESSION TECHNIQUE
USING SVD

The main intention of studying the SVD of an image
(matrix of m ⋅ n) is to create approximations of an image
using the least amount of the terms of the diagonal matrix in
the decomposition. This approximation of the matrix is the
basis of image compression using SVD, since images can be
viewed as matrices with each pixel being an element of a
matrix. The main concept of this section is to present two
algorithms: The first one is the Python SVD function, while
the second one describes how to obtain a new SVD using
Block SVD Power Method.

A. Algorithm of Python SVD Function

We will use numpy.linalg library's svd function to compute
svd of a matrix in python. The svd function returns U,s,V.

1. U has left singular vectors in the columns
2. s is rank 1 numpy array with singular values
3. V has right singular vectors in the rows -equivalent to

V transpose in traditional linear algebra literature

The reconstructed approximation of the original matrix is
done using a subset of singular vectors as below in
the compress_svd function. We use numpy array slicing to
select k singular vectors and values. Instead of storing m×n
values for the original image, we can now store k(m+n)+k
values.

reconst_matrix = np.dot(U[:,:k],np.dot(np.diag(s[:k]),
V[:k,:]))
def compress_svd(image,k):
"""
Perform svd decomposition and truncated (using k singular
values/vectors) reconstruction
returns --------
reconstructed matrix reconst_matrix, array of singular
values s
"""
U,s,V = svd(image,full_matrices=False)
reconst_matrix = np.dot(U[:,:k],np.diag(s[:k]),V[:k,:]))
return reconst_matrix,s

B. Algorithm of SVD Power Method

Input: A matrix A ∈(R)n⋅m, a block-vector
 V = V(0) ∈ Rm⋅s and a tolerance tol
Output: An orthogonal matrices
 U = [u1,u2,...,us] ∈ Rn⋅s
 V = [v1,v2,...,vs] ∈Rm⋅s
 and a positive diagonal matrix
 Σ = diag(α1,α2,...,αs)
 such that : AV = UΣ
 While (err > tol) do
 AV = QR(factorization QR),
 U ← Q(:, 1 : s)
 (the s first vector colonne of Q)
 ATU = QR,
 V ← Q(:, 1 : s) and Σ ← R(1 : s, 1 : s)
 err = ||AV - UΣ||
 End

C. Proposed Image Compression Technique

The contribution of this paper is the introduction of the
concept of application of Block SVD Power Method to
image compression, the main idea of image compression is
reducing the redundancy of the image and the transferring
data in an efficient form.

We propose our method to integrate the Block SVD Power
Method and adopt it to create an algorithm that compress an
image. Fig. 1 shows the main pipeline of the proposed
method.

23 AJEAT Vol.10 No.1 January-June 2021

Image Compression Techniques Using Linear Algebra with SVD Algorithm

When the SVD is applied to an image, it is not compressed,
but the data take a form in which the first singular value has
a large amount of the image information. With this, we can
use only a few singular values to represent the image with
slight differences from the original. The input image can be
a color image with RGB color components or may be a
grayscale image. Additionally, for creating new image with
Python SVD function as indicated in the Fig. 1, we use:
Icomp = U(:, 1 : K) * Σ (1 : K, 1 : K) *(V(:, 1 : K)T) (1)

Fig. 1 New Architecture of Image pre-processing using SVD

In this paper is to set up a new algorithm for image
compression that overcomes some inconveniences
encountered in existing methods that use Python SVD
function. Our modification consists of a computing the SVD
for each component step, in which the entries in the image I
are calculated using Block SVD Power Method obtained by
[15] instead of Python SVD function [14] and keeps the K
rank determined by (see Eq.5).

We suggesting an image compression based on Block SVD
Power Method. Most of methods focus on other methods
and other variation of SVD. Moreover, our method is novel,
efficient for solving our problem. It is general and many
other computer visions can benefit from using it. The results
are clearly showing the superiority of the proposed lossy
image compression technique over those of Python SVD
function and some different compression techniques.

IV. EXPERIMENTAL RESULTS

Main aim of our work is Image compression. Our
experiments were performed on several images available on
WANG Databases. Simulations were done in Python.

A. Measurement for Comparison

To evaluate the performance of the proposed method, the
quality of the image is estimated using several quality

measurement variables like, Mean Square Error (MSE) and
Peak Signal-to-Noise Ratio (PSNR). These variables are
signal fidelity metrics and do not measure how viewers
perceive visual quality of an image.

B. Measurement of Compression Ratio

The degree of data reduction obtained by a compression
method can be evaluated using the compression ratio (Qcomp)
defined by the formula:

 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑜𝑜 𝑂𝑂𝑂𝑂𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑐𝑐𝑂𝑂𝑂𝑂𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑜𝑜 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑂𝑂𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶 𝑆𝑆𝑐𝑐𝑂𝑂𝑂𝑂𝑆𝑆
 (2)

C. Mean Square Error (MSE)

MSE, which for two M * N monochrome images X and Y
where one of the images is considered noisy approximation
of the other and is defined as follows:

 𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀 = 1

𝑀𝑀𝑀𝑀
 ∑𝑀𝑀−1

𝑆𝑆=0 ∑𝑀𝑀−1
𝑗𝑗=0 [𝑋𝑋(𝑆𝑆, 𝑗𝑗) − 𝑌𝑌(𝑆𝑆, 𝑗𝑗)]2 (3)

 D. Peak Signal-to-Noise Ratio (PSNR)

PSNR is measured in decibels (dB), and is only meaningful
for data encoded in terms of bits per sample bits per pixel.
For example, an image with 8 bits per pixel contains
integers from 0–255. PSNR is given by the following
equation:

 𝑃𝑃𝑆𝑆𝑀𝑀𝑃𝑃 = 10 𝑂𝑂𝑐𝑐𝑂𝑂10
�2𝐵𝐵−1�

2

𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀
 (4)

A high PSNR value indicates that there is less visual
degradation in the compressed image.

A. Image Compression

We test our method, we develop a user interface. The
method was applied to various and real images to
demonstrate the performances of the proposed algorithm of
image compression.

Here, we used 2 color images such as Giraffe and India
Gate available in WANG Database and one in grayscale.
Figures 4, 5, 6 and 7 show the test images and the resulting
compressed images using Python SVD function [14] and the
proposed compression method.

We recall that our goal is to approximate an image (matrix
of m ⋅ n) using the least amount of information. Thereby,
to obtain a better quality of the compressed image using
SVD, we use the K rank determined by El Asnaoui et al.,
[14]:
 𝐾𝐾 = 𝑐𝑐×𝑂𝑂

𝑐𝑐+𝑂𝑂+1
 (5)

Where m and n are the size of original image.

24AJEAT Vol.10 No.1 January-June 2021

S. Karthigai Selvam and S. Selvam

(a) Giraffe

(b) India Gate

 (c) Grayscale

Fig. 4 Original Images

B. Analysis with Color Image

After rank K = 438, we obtain:

(a)

(b)

Fig. 5 Image compressed results obtained by:
a. Python SVD function, b. Proposed method

TABLE I IMAGE COMPRESSION RESULTS FOR GIRAFFE.JPG,
1024 × 768, 858KB, BY USING:

 Python SVD function Proposed method

K 𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 MSE PSNR 𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 MSE PSNR

25 9.8635 30.8213 30.7839 7.5023 46.8792 48.0017

50 9.4127 31.2231 32.8613 7.4123 47.2051 49.6834

75 8.8454 33.4624 34.9174 7.3923 48.2928 50.7678

100 8.2839 35.5016 36.9711 7.3722 49.3804 51.8522

125 8.0601 36.9601 38.5246 7.3628 50.2263 52.6677

150 7.8416 38.4162 40.0752 7.3532 51.0722 53.4831

175 7.7425 39.6034 41.4147 7.3538 51.3384 53.7384

200 7.6453 40.7905 42.7541 7.3543 51.6045 53.9934

225 7.5935 41.8770 43.9656 7.3481 52.7398 55.0594

250 7.5402 42.9643 45.1763 7.3419 53.8751 56.1254

275 7.5041 44.0238 46.3197 7.3371 55.0086 57.2463

300 7.4661 45.0832 47.4630 7.3323 56.1422 58.3672

325 7.4393 46.1445 48.5717 7.3312 57.4115 59.8254

350 7.4123 47.2051 49.6804 7.3301 58.6809 61.2833

375 7.3923 48.2943 50.7653 7.3283 60.5681 63.8087

400 7.3722 49.3834 51.8542 7.3264 62.4553 66.3341

425 7.3628 50.2573 52.6687 7.3234 66.6775 71.6270

438 7.3532 51.0722 53.4831 7.3203 70.8998 76.9199

(a)

(b)

Fig. 6 Image compressed results obtained by:
a. Python SVD function, b. proposed method

25 AJEAT Vol.10 No.1 January-June 2021

Image Compression Techniques Using Linear Algebra with SVD Algorithm

TABLE II IMAGE COMPRESSION RESULTS FOR INDIAGATE .JPG, 1024 × 768, 858KB, BY USING

 Python SVD function Proposed method

K 𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 MSE PSNR 𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 MSE PSNR

25 9.5409 27.6201 33.9037 7.0768 43.7210 46.9405

50 9.2389 28.4011 35.1045 6.9845 44.5122 48.4405

75 8.6088 29.8450 36.2988 6.9623 46.1665 49.8235

100 7.9788 31.2889 37.4932 6.9401 47.8209 51.2066

125 7.7346 32.5600 38.5471 6.9317 49.2150 52.4031

150 7.4904 33.8312 39.6011 6.9234 50.6091 53.5996

175 7.3713 35.0760 40.6256 6.9227 51.0844 54.0164

200 7.2523 36.3209 41.6502 6.9221 51.5598 54.4332

225 7.1760 37.5911 42.7026 6.9072 53.7449 56.6567

250 7.0998 38.8613 43.7551 6.8923 55.9301 58.8803

275 7.0621 40.2133 44.8726 6.8863 58.021 61.0707

300 7.0245 41.5653 45.9901 6.8804 60.1123 63.2612

325 7.0028 43.0392 47.2161 6.8779 62.271 65.2258

350 6.9811 44.5132 48.4421 6.8754 64.4297 67.1905

375 6.9595 46.1671 49.8244 6.8720 67.6065 70.9153

400 6.9379 47.8211 51.2067 6.8687 70.7834 74.6401

425 6.9306 49.2151 52.4031 6.8687 77.7668 83.8061

438 6.9234 50.6091 53.5996 6.8688 84.7503 92.9721

C. Analysis with Grayscale Image

In order to compare this performance, we also applied the new method to the gray scale image
After rank K = 548, we obtain:

(a)

(b)

Fig. 7 Image compressed results obtained on the: a. Python SVD function, b. proposed method

26AJEAT Vol.10 No.1 January-June 2021

S. Karthigai Selvam and S. Selvam

TABLE III IMAGE COMPRESSION RESULTS FOR GRAYSCALE.JPG, 1024 × 960, 480KB, BY USING

 Python SVD function Proposed method
K 𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 MSE PSNR 𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 MSE PSNR
25 4.9878 80.3421 27.6723 4.0621 9.5381 39.5372

50 4.9789 78.5091 29.2222 4.0589 9.4523 38.4098

75 4.6460 55.8911 31.08 4.0693 7.5163 39.5551

100 4.3132 33.2732 32.9378 4.0798 5.5803 40.7005

125 4.2067 25.1121 34.4039 4.1016 4.5246 41.7318

150 4.1002 16.9510 35.8701 4.1234 3.4689 42.7631

175 4.0779 13.2016 37.1421 4.1219 2.8566 43.7176

200 4.0556 9.4523 38.4142 4.1205 2.2443 44.6722

225 4.0699 7.5168 39.5574 4.1053 1.8652 45.5686

250 4.0843 5.5813 40.7006 4.0901 1.4861 46.4651

275 4.1037 4.5258 41.732 4.0756 1.2432 47.3227

300 4.1231 3.4704 42.7634 4.0611 1.0004 48.1803

325 4.1237 2.8574 43.7169 4.0531 0.8417 49.0217

350 4.1243 2.2444 44.6705 4.0452 0.6831 49.8631

375 4.1082 1.8626 45.5675 4.0346 0.5765 50.6617

400 4.0921 1.4808 46.4645 4.0241 0.4699 51.4603

425 4.0796 1.2405 47.3226 4.0198 0.3855 52.4072

450 4.0671 1.0003 48.1808 4.0156 0.3011 53.3541

475 4.0551 0.8422 49.0215 4.0139 0.2422 54.4873

500 4.0432 0.6842 49.8622 4.0123 0.1834 55.6206

525 4.0336 0.5770 50.6612 4.0112 0.1353 57.2296

548 4.0241 0.4699 51.4603 4.0101 0.0872 58.8387

D. Analysis with Other Methods

To evaluate the robustness of our scheme, we test it with other methods like: [10, 13, 14]. Added experiment results for two
images are listed in Table IV.

TABLE IV IMAGE COMPARISON WITH VARIOUS ALGORITHMS

Color image (Fig. 4a) Grayscale image (Fig.4c)

𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 MSE PSNR 𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 MSE PSNR
BTC method [13] 9.2713 62.0951 30.2004 5.3912 16.1183 26.0905

BTC method [10] 7.3406 7.9635 39.1261 3.9808 19.0298 35.3689

BTC method [14] 6.7203 2.7451 43.7507 2.8441 3.4708 42.7644

SVD method [14] 7.3508 0.2900 53.4831 4.0261 0.4722 51.4612

Proposed method 7.3107 0.0013 76.9199 4.0110 0.0804 58.8387

In this paper, the proposed algorithm is compared with the
Python SVD function [14] and the other state-of-the-art
algorithms. When applying the proposed method to image
compression, Figs. 5, 6 and 7, it is shown that the
compressed images by two approaches are similar to
original images. But the human visual response to image
quality is insufficient.

We compare the performances of the proposed method,
several values were used in this study to measure the quality
of the compressed image. We will discuss PSNR and MSE
values, because, they are used to compare the squared error
between the original image and the reconstructed image.
There is an inverse relationship between PSNR and MSE.
Therefore, a higher PSNR value indicates the quality of the
image.

27 AJEAT Vol.10 No.1 January-June 2021

Image Compression Techniques Using Linear Algebra with SVD Algorithm

This analysis shows the comparison when SVD and
proposed method are applied on the original images. In
these experiments, we used the K rank for different images.
We see in this case that the compression ratio and PSNR,
and other values of images varied when changing the rank
of image during the SVD process as showed in Tables 1, 2
and 3, and it is evident that the proposed technique gives
better performance compared to the SVD. In addition, for
the Python SVD function, the value of K which provides
better PSNR value is the maximum value of K = 438, while
for the proposed technique, a better, compression ratio,
PSNR is provided from K = 150 for color images. We
concluded that our proposed method result is 1/3 of K rank
compare to other methods.

Concerning the grayscale image analysis, it seems that the
value of K which gives better PSNR value is the maximum
value of K = 548, while for the proposed method, a better,
compression ratio, PSNR is provided from K = 400.

We compared the proposed algorithm with the other
algorithms as shown in Table IV. Hence, show our proposed
algorithm performs com-parable to other existing
techniques. It is able to produce a compressed image with
better visual quality, as indicated by its PSNR.

V. CONCLUSION

In this work a novel method for image compression, this
technique is very simple, and it can be used to overcome
limitations of existing algorithms, that used in the Python
SVD function. The results shown that the proposed
approach might be considered as a solution for the
development of image compression. Our proposed method
of image compression is provided faster due to the
minimum number of iterations in the compression
algorithm.

VI. FUTURE SCOPE

The future scope of this work is using the SVD for
statistical applications to find relations between data, in the
area of medical image denoising with different thresholding
techniques associated with these multi wavelets, implements
a compression technique using neural network.

REFERENCES

[1] A. J. Madhuri, “Digital Image Processing. An Algorithmic
Approach,” pp. 175–217. PHI, New Delhi, 2006.

[2] M. J. Weinberger, G. Seroussi and G. Sapiro, “The LOCO-I lossless
image compression algorithm: principles and standardization into
JPEG-LS,” IEEE Transactions Image Processing, Vol. 2, pp. 1309–
1324, 2000.

[3] M. A. Alkhalayleh and A. M. Otair, “A new lossless method of image
compression by decomposing the tree of Huffman technique,”
International journal of imaging & robotics Vol. 15, No. 2, pp. 79–
96, 2015.

[4] W. Jianji, Z. Nanning, L. Yuehu and Z. Gang,”Parameter analysis of
fractal image compression and its applications in image sharpening
and smoothing,” Signal Processing: Image Communication journal,
Vol. 28, pp. 681– 687, 2013.

[5] A. Bilgin, W. Michael, M. Marcellin, I. Altbach, “Compression of
electrocardiogram signal using JPEG2000,” IEEE Transactions on
Communications Electronics (ICIP), Vol. 49, No. 4, pp. 833–840,
2003.

[6] M. R. Awwal, G. Anbarjafari, H. Demirel, “Lossy image
compression using singular value decomposition and wavelet
difference reduction,” Digital Signal Process, Vol. 24, pp. 117–123,
2014.

[7] M. Adiwijaya, B. K. Dewi, F. A. Yulianto and B. Purnama, “Digital
image compression using graph coloring quantization based on
wavelet SVD,” Journal of Physics Conference Series, Vol. 423, No.
1, pp. 012-019, 2013.

[8] A. Ranade, S. S. Mahabalarao and S. Kale, “A variation on SVD
based image compression,” Image and Vision Computing journal,
Vol. 25, No. 6, pp. 771–777, 2007.

[9] M. Doaa and A. F. Chadi, “Image compression using block
truncation coding,” Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas
Telecommun. (JSAT), February, 2011.

[10] E. J. Delp and O.R. Mitchell, “Image compression using block
compression”, IEEE Transactions onCommunications Vol. 27, No. 9,
pp. 1335–1342, 1979.

[11] C. C. Tsou, S. H. Wu and Y. C. Hu, “Fast pixel grouping technique
for block truncation coding,” In: Workshop on Consumer Electronics
and Signal Processing (WCEsp05), Yunlin, pp. 17–18, Nov. 2005.

[12] N. K. El Abbadi, A. Al Rammahi, D. S. Redha and M. Abdul-
Hameed, “Image compression based on SVD and MPQ-BTC”,
Journal 0f Computer Science, Vol. 10, No. 10, pp. 2095–2104, 2014.

[13] K. El Asnaoui and Y. Chawki, “Two new methods for image
compression,” International journal of imaging & robotics, Vol. 15,
No. 4, pp. 1–11, 2015.

[14] A. H. Bentbib and A. Kanber, “Block power method for SVD
decomposition,” Analele Stiintifice ale Universitatii Ovidius
Constanta Seria Matematic, Vol. 23, No. 2, pp. 45–58, 2015.

28AJEAT Vol.10 No.1 January-June 2021

S. Karthigai Selvam and S. Selvam

