
Implementation of ReBISR Scheme for RAMs Using
Spare Elements 

Shweta Meena
1PG Scholar, Aurora’s Scientific Technological and Research Academy, Hyderabad - 500 005, Andra Pradesh, India

Email: mail2shwetameena@gmail.com
(Received on 18 February 2013 and accepted on 25 May 2013)

Abstract – Key components of SOCs are memories which come 

with	 different	 sizes	 and	 different	 configurations.	 Memories	

usually constitute a major portion of the chip area. By improving 

the yield of RAM improves the yield of chip. Diagnostics for 

yield improvement of the memories thus is a very important 

issue. This paper presents a Built-in Self Repair scheme to 

repair the memories for yield improvement of the chip using 

redundancy analysis algorithm. The proposed BISR scheme has 

three	phases.	In	the	first	phase	BIST	is	used	to	detect	the	faulty	

location in the memory. In order to determine a correct repair 

solution, spare memories are allocated in the second phase 

using BIRA circuitry. Finally, in the third phase the actual 

repair process is carried out using BISR circuitry. Experimental 

results show that the proposed BISR algorithm achieves optimal 

repair rate and low area cost. 

Keywords: Memory built-in self test (MBIST), Built-in 

redundancy analysis (BIRA), Writing0/ writing1 algorithm, 

Built-in self repair

I. IntroductIon

 As VLSI devices are becoming more and more 
complex, there is a need for high density memories for 
implementation of system chip. As SOC size is shrinking, 
the major area on SOC is occupied by embedded memories. 
Thus memories in chip will decide the yield of the SOC. 
Since chip area is a major constrain, RAM’s are subjected to 
manufacturing defects due to dense packing. That is, RAMs 
have more serious problems of yield and reliability in an 
SOC. Generally much of the low yield of the chip is due to 
faults in the memory. Hence there is a need to repair these 
memories for yield improvement. For such purpose, usually 
redundancy analysis is implemented using spare elements 
i. e. spare rows and/or spare columns. Conventionally,

Asian Journal of Engineering and Applied Technology
ISSN: 2249-068X (P) Vol. 2  No. 1, 2013, pp.21-27

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajeat-2013.2.1.646

redundancy analysis (RA) is performed using Automatic 
Test equipment (ATE). But ATE is a time taking process 
since RA algorithms using ATE are complex, costly and 
the memories that implement the redundancies are usually 
large. Most SOCs adopt a built-in self-test and built-
in redundancy analysis to test and repair their embedded 
memories instead of using external ATE because this 
method is more cost-effective and less time consuming. 2-D 
redundancy approach is proposed in this paper for carrying 
out the repair process.

 Many BISR schemes have been proposed for repairing 
RAMs. BIRA algorithm is one key component of a BISR 
scheme, and it is responsible for allocating redundancies 
for defective RAMs. The BIRA algorithm called Fault 
Checking Algorithm is presented in this paper. The BIRA 
modules can be used in parallel to allocate redundancy. 
However, the numbers of BIRA modules will be increased 
with respect to the number of redundancies of the defective 
RAMs. This results in very high area cost. The solution 
to the above problem is to use a single BISR circuit. The 
ReBISR can be shared by multiple RAMs with different 
sizes and redundancy organizations. This can reduce the 
area cost of the BISR circuits in an SOC. 

II. BISR archItecture

 The memory BISR (MBISR) contains an interface 
between memory BIST (MBIST) and redundancy wrapper 
for storing faulty addresses. The MBIST controller output 
must provide three signals to the wrapper logic during test. A 
fail signal to store data in the fuse register, the expected data 
that is compared to the results of RAM data and the failing 
address.Fig.1shows the architecture of MBISR scheme for 
a RAM, which consists of four major components.

21 AJEAT Vol.2 No.1 January - June 2013



1) Repairable RAM: A RAM with redundancies, address 
decoder and repair register is called a repairable RAM. 
Figure 2 depicts an example of an    8*8 bit-oriented 
RAM with 1 spare row and column. Address decoder 
is used to select the column and row where our desired 
data lies. Sense amplifier assists the charging of the 
lines so that the memory cell doesn’t discharge and 
lose its data. Row repair address and column repair 
address are the address of the defective row and column 
respectively. When RAE is high, the RRA is decoded 
using decoder into control signal to replace the faulty 
row. Similarly when the CAE is high, the CRA used to 
repair the faulty column.

2) BIST Circuit: It generates test patterns for repairable            
RAM using TPG during testing. If a fault is detected in 
the defective RAM by the BIST circuit, then the faulty 
information is sent to BIRA circuit.

3) BIRA Circuit: If BIST detects a fault, then the faulty   
information is exported to the BIRA circuitry and then 
BIRA allocates redundancies according to the faulty 
information provided by the BIST circuit using the 
redundancy analysis algorithm.

 The overall RAM BISR flow as depicted in Fig.1.is 
described as follows. Firstly, the BIST tests the repairable 
RAM. If BIST detects a fault, then the fault information 

Fig. 1 Architecture of BISR Scheme for RAMs

Fig. 2 An 8 * 8 bit oriented repairable RAM

is exported to the BIRA circuit. Then, the BIRA circuit 
collects the faulty information provided by the BIST circuit 
and allocates redundancies to replace defective elements. 
When the repair process finished, the repair signatures are 
loaded into the repair register in the repairable RAM. 

A. Memory Bist 

 MBIST is used to test the on chip memories, where the 
on chip memories can be RAM, SRAM, DRAM and flash 
memory. The block diagram of the proposed MBIST is 
shown in fig. 3.TPG is used to generate the test sequences 
which are applied to RAM during testing. Comparator is 
used to compare the output responses with the expected 
responses and decision is made whether the RAM is faulty 
or fault free. A controller is a hardware realization of a 
memory test algorithm, usually in the form of an FSM. The 
memory test algorithm here is writing0/writing1algorithm.

 This algorithm involves successive writing and reading 
of 0’s and 1’s into the RAM. The fault location details like 
fault present, fault row and fault column addresses are given 
at the output pins. The input pin start is made one when the 
BIST starts the testing process. The output pin done and 
progress are resulted to one and zero respectively, after the 
MBIST process is completed, so that the ReBIRA circuit 
can start analysis. The MBSIT FSM is shown in fig.4. 

AJEAT Vol.2 No.1 January - June 2013 22

Shweta Meena



Fig. 3 Typical block diagram of proposed MBIST

State: Idle

 When the input pin start is asserted to zero, the MBIST 
process is not yet started so it remains in the idle state. Else, 
the MBIST process enters into the next.

State: W1

 In this state, all the memory locations are filled with 1’s 
using the mem_wr_data when mem_wr signal is high, until 
the row address is equal to zero. When row address is equal 
to zero, the MBIST process enters into next state called 
R1state. 

State: R1

 In this state, when mem_rd is 1, all the memory locations 
are read through mem_rd_data until row address is equal to 
zero. When row address is equal to zero, the MBIST process 
enters into next state.

State: W0

 In this state, when mem_wr is 1, all the memory 
locations are filled with 0’s using mem_wr_data until row 
address is equal to zero. When row address is equal to zero, 
the MBIST process into next state.

State: R1

 In this state, when mem_rd is 1, all the memory locations 
are read through mem_rd_data until row address is equal to 
zero. When row address is equal to zero, the MBIST process 
into next state called done.

State: Done

 At this stage, the MBIST circuit completes the testing of 
the memory and it again enters into the idle state.

1. Proposed Memory ReBIRA 

 If separate BIRA circuit is used for repairing individual 
RAM in an SOC, then the total area in the SOC is large, 
since there are many RAMs in a SOC. In the proposed BISR 
scheme single BIRA circuit is used for repairing many 
RAMs. Hence the area cost is reduced.

1.1 Architecture of The ReBIRA 

 Fig. 5 shows the simplified block diagram of ReBIRA 
used for repairing multiple RAMs in an SOC. If the BIST 
detects a fault, then the fault information is exported to 
the ReBIRA circuitry, and then the ReBIRA performs 

Fig. 4 MBIST FSM

23 AJEAT Vol.2 No.1 January - June 2013

Implementation of ReBISR Scheme for RAMs Using Spare Elements



redundancy allocation based on the redundancy algorithm. 
The redundancy algorithm used here is Fault Checking 
Algorithm. Fault information includes fault row and fault 
column addresses and the fault_present. The proposed 
scheme uses a local bitmap (fault_table) of size 4*64 to store 
fault information detected by the BIST circuit. Once the 
local bitmap is full, the MBIST is paused and the ReBIRA 
allocates redundancies according to the fault information. 
After, the ReBIRA allocates a redundancy to repair a 
corresponding faulty row/column, the local bitmap is 
updated and the MBIST is resumed. This process continues 
until the test and repair process is completed. The repair 
information i.e. repair_register_write,repair_register_
data,repair_register_address is sent to the repair register in 
the repairable RAM once one spare element is allocated.
Fig.6. shows the simplified block diagram of repairable 
RAM. After the ReBIRA circuit allocates redundancies, the 
repair signatures rep_reg_wr, rep_reg_data and rep_reg_
addr are sent to the repair registers present in the repairable 
RAM. Then, the RAM is repaired using this information as 
follows.

 When, either Clk signal or rst signal is high, the row 
repair registers and the column repair registers are filled to 
zeroes. When rep_reg_wr signal is high, if rep_reg_addr is 
less than the number of spare rows, then the rep_reg_data 
(defective row addresses) is written into the row_repair_
address_reg, else if rep_reg_addr is less than the number of 
sum of spare rows and spare columns, the rep_reg_data is 
written into the column_repair_address_reg.                                                          

Fig. 5 Simplified block diagram of ReBIRA

Fig. 7 A 4x64 Local Bitmap

1.2  Redundancy Analysis Algorithm 

 In this section the proposed redundancy algorithm 
known as Fault-checking algorithm is described. The Fault-
Checking algorithm can be used for RAM with different 
redundancy organization.Fig.6 shows RAM with local 
spare column and global spare row. In order to carry out 
the redundancy analysis a local bitmap of size 4X64 is used 
which is shown in fig.7. The local bitmap is updated with 
the faulty information detected by BIST circuit. Once the 
local bit map is full, the Fault-Checking algorithm does the 
analysis based on the faulty informationthe local bitmap. 

 A row address register is used for each row in order to 
store the faulty row address. Here 64 columns are used. 
Since there are 64 columns in the memory and 64 columns 
in the local bitmap, there is a one to one mapping between 
memory and local bitmap. The Fault-checking algorithm 
checks the number of rows and columns with fault in the 
local bitmap. If the number of rows with faults (NRF) is 
more than the number of columns with faults (NCF), then 
a defective column with maximum number of faults (CMF) 
is replaced with a spare column. If the number of columns 
with faults (NCF) is more than the number of rows with 
faults (NRF), then a defective row with maximum number 

 

Fig.6. RAM with one global spare row and two local spare columns

AJEAT Vol.2 No.1 January - June 2013 24

Shweta Meena



Fig. 8 Simplified Block diagram of the proposed ReBISR scheme for 
repairing multiple RAMs

 Fig. 9 ReBISR FSM                  

of faults (RMF) is replaced with a spare row. This process 
continues till all the faults in the local bitmap are repaired.

A Fault-Checking Algorithm for allocating spare elements

1. Start BIST; stop and go to Step 2 when fault is detected.

2. If the fault is repaired jump to step1, else go to Step 3.

3. If the local bitmap is full, go to the next step, else, go to 
Step 1.

4. If number of faulty rows is greater than the number of 
faulty column, replace the maximum faulty column with 
a spare column. Similarly if number of faulty columns 
is greater than the number of faulty rows, replace the 
maximum faulty row with a spare row.  

5. Check if the BIST is completed. If so, go to step 6. 
Otherwise, go to Step 1 when the local bitmap is not 
full; go to Step 4 when the local bitmap is full.

6.  If the local bitmap is empty export the repaired 
addresses and then stop. Otherwise, go to Step 4.

1.3  Design Of ReBISR Scheme 

 Fig.8 shows simplified block diagram of the proposed 
ReBISR scheme for repairing multiple RAMs in an SOC.
RAM details table is used for storing the configurations of 
RAMs which includes the memory data width and depth, 
number of spare rows and number of spare columns. FSM is 
the main block that acts as a BIST controller for generating 
the control signals during testing and repairing. The BIST 

Controller controls the BIST and ReBIRA circuit. The 
BIST controller reads the RAM detail table and sends the 
RAM configurations like number of rows and number of 
columns to BIST and number of spare rows and number 
of spare columns to ReBIRA circuit. Program_ram_details 
and ram_details signals are used to make entries into the 
RAM detail table using the write pointer. Once the RAM 
detail table is full, the BIST and ReBIRA circuits start the 
testing and repairing process of RAMs one after other. If 
the BIST circuit detects a fault, then the fault information 
is exported to the ReBIRA circuitry, and then the ReBIRA 
performs redundancy allocation. After the ReBIRA 
allocates a redundancy to repair a corresponding faulty 
row or column, the local bitmap is updated and the BIST 
is resumed. This process continues until the test and repair 
process is finished. The repair signatures from the ReBIRA 
circuit are then sent to the repair registers present in the 
repairable RAMs. The BIST tests the RAMs once again 
(after the testing and repairing processes) to ensure that 
there are no faults present.Fig.9 shows the ReBISR FSM.

25 AJEAT Vol.2 No.1 January - June 2013

Implementation of ReBISR Scheme for RAMs Using Spare Elements



Table I example of fouR Rams wITh DIffeRenT ConfIguRaTIon    

 Table I shows four RAMs with various sizes and different 
redundancy configurations, where (Row X Column) 
denotes the row address width and column address width; 
(r, c) denotes the numbers of spare rows and spare columns. 
Therefore, design parameters of the ReBIRA for these four 

RAMs as shown in Table I are (Row X Column) = (256 
X 64) and (r,c) = (3,3).The proposed ReBISR scheme tests 
and repairs each RAM serially. 

III. exPerIMental results

 Four RAMs with different number of redundancy 
configurations are simulated. The ReBISR and Dedicated 
BISR schemes have been synthesized and found the area 
cost and time cost. Table 2 summarizes simulation and 
comparison results of the ReBISR scheme and the dedicated 
BISR (DeBISR) scheme.

Fig.10 Output waveforms of ReBIRA.

Fig.11 Output waveform of BISR.

AJEAT Vol.2 No.1 January - June 2013 26

Shweta Meena



Table II sImulaTIon anD CompaRIson ResulTs of The RebIsR sCheme anD DeDICaTeD bIsR sCheme

 Fig.10 shows the output waveform of ReBIRA module. 
The ReBIRA waveform shows bit 1 as fault information and 
bit 0 as fault free information. Address of the faulty row and 
faulty column are also shown.

 Fig.11 shows output waveform of BISR module. If the 
BIST circuit detects a fault, the corresponding bit of fault_
present is made high and the fault information i.e. address 
is exported to the ReBIRA circuit and the BIST is paused 
simultaneously.

IV. conclusIon

 We have proposed a Reconfigurable BISR scheme to 
repair multiple RAMs with different depths and redundancy 
configurations. BIRA algorithm for redundancy analysis 
has been presented. Simulation results show that results the 
ReBISR scheme incurs low area cost when compared with 
the dedicated BISR. Also, the reconfigurable BISR scheme 
has greater flexibility than the dedicated BISR scheme as 
the former one supports the repair of multiple memories. 
Therefore, our ReBISR scheme has low area cost compared 
with the other BISR scheme for general applications.

RefeRenCes

[1]  Tsu-Wei Tseng, Jin-Fu Li, Member, IEEE, and Chih-Chiang Hsu, 
“A Reconfigurable Built-In Self-Repair Scheme for Random Access 
Memories in SOCs”, IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems, Vol.18, No. 6, JUNE 2010.

[2]  R. Rajsuman, “Design and test of large embedded memories: An 
overview,” IEEE Des. Test Comput. Vol.18, No.3, pp.16-27, May 
2001.

[3]  Y. Zorian, “Embedded memory test&repair: Infrastructure IP for 
SOC yield,” in Proc. Int. Test Conf. (ITC), Baltimore, MD, pp. 340-
349, Oct. 2002.

[4]  S. Nakahara, K. Higeta, M. Kohno, T. Kawamura, and K. Kakitani, 
“Built-in self-test for GHz embedded SRAMs using flexible pattern 
generator and new repair algorithm,” in Proc. Int. Test Conf. (ITC), 
pp. 301–310, 1999.

[5]  Jin-Fu Li, “Memory Built-In Self-Repair”, Advanced Reliable 
Systems (ARES) Lab., Department of Electrical Engineering, 
National Central University, Jhongli, Taiwan.

[6]  Joohwan Lee, Kihyun Park, and Sungho Kang, “An Area-efficient 
Built-in Redundancy Analysis for Embedded Memories with 
Optimal Repair Rate using 2-D Redundancy” Dept. of Electrical & 
Electronic Engineering, Yonsei University ,Seoul, Korea.

[7]  S. K. Thakur, R. A. Parekhji, and A. N. Chandorkar, “On-chip test 
and repair of memories for static and dynamic faults,” in Proc. Int. 
Test Conf. (ITC), Santa Clara, CA, pp. 1-10, Oct. 2006.

[8]  S.Y. Kuo and W.K.Fuchs, “Efficient spare allocation in reconfigurable 
arrays,” IEEE Des. Test Comput., Vol.4, No.1, pp.24-31, Feb.1987.

[9]  D. Xiaogang, S. M. Reddy, W.T. Cheng, J. Rayhawk, and N. 
Mukherjee, “At-speed built-in self-repair analyzer for embedded 
word-oriented memories,” in Proc. Int. Conf. VLSI Des., pp.895–
900, 2004.

[10]  D. K. Bhavsar, “An algorithm for row-column self-repair of RAMs 
and its implementation in the Alpha 21264,” in Proc. Int. Test Conf. 
(ITC), Atlantic City, NJ, pp. 311–318, Sep. 1999.

[11] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and H. 
Hidaka, “A built-in self-repair analyzer (CRESTA) for embedded 
DRAMs,” in Proc. Int. Test Conf. (ITC), pp. 567-574, 2000.

[12]  J.-F. Li, J.-C. Yeh, R.-F. Huang, and C.-W. Wu,  “A built-in self-
repair design for RAMs with 2-D redundancies,” IEEE Trans. Very 
Large Scale Integr. (VLSI) Syst., Vol.13, No.6, pp.742-745, Jun. 
2005.

[13]  P. Ohler, S. Hellebrand, and H.-J. Wunderlich, “An integrated built-
in self-test and repair approach for memories with 2D redundancy,” 
in Proc. IEEE Eur. Test Symp. (ETS), Freiburg,  pp.91-99, May 
2007.

[14]  C.-D. Huang, J.-F. Li and T.-W. Tseng, “ProTaR: An infrastructure 
IP for repairing RAMs in SOCs,” IEEE Trans. Very Large Scale 
Integr. (VLSI) Syst., Vol.15, No.10, pp.1135-1143, Oct. 2007.

[15] R.-F. Huang, J.-F. Li, J.-C. Yeh, and C.-W. Wu, “Rainsin: Redundancy 
analysis algorithm simulation,” IEEE Des. Test Comput., Vol.24, 
No.4, pp.386-396, Jul- Aug. 2007.

27 AJEAT Vol.2 No.1 January - June 2013

Implementation of ReBISR Scheme for RAMs Using Spare Elements


