
Indexing Genome with the External Construction of
Compressed	Suffix	Tree	Using	LCP	Array

Vijay Kumar VishwakarmaI and Abhishek Srivastava2

Department of Computer Science and Engineering, Jaypee University of Engineering and Technology,
Guna, Madhya Pradesh - 473 226, India

Email: vijaykrvishwakarma@gmail.com, abhishek.srivastava@jiet.ac.in
(Received on 10 April 2013 and accepted on 15 May 2013)

Abstract – We are proposing the genome indexing algorithm,
which	 depends	 upon	 compressed	 form	 of	 suffix	 trees,	 in	
which	 every	 node	 has	 four	 parts;	 suffix	 array	 number,	 suffix	
start number, LCP count, and a pointer to another node. The
proposed	algorithm	does	not	use	the	whole	suffix	array,	it	just	
takes	some	necessary	information	like	LCP	of	two	suffix	array,	
compare	 them	 and	 suffix	 start	 number,	 to	 align	 the	 suffix	 to	
proper	position	and	suffix	array	number	to	distinguish	among	
all	the	partitions.	The	use	of	compressed	suffix	array	minimizes	
the number of trees, eventually; it also minimizes the random
access	to	input	data,	as	it	creates	the	compressed	suffix	tree	for	
two	suffix	arrays	using	pairwise	sorting,	sequentially.

Keywords: Genome	 Indexing,	 Compressed	 Suffix	 Tree,	 Data	
Structure, DNA Indexing

I. IntroductIon

 Genome word came from the words “Gene” and
“Chromosome”. It contains the hereditary information of an
organism. A genome is an organism’s complete set of DNA,
including all of its genes. Each genome contains all of the
information needed to build and maintain that organism.
There are 4 nucleotides in a Genome Sequence; Adenine
(A), Cytosine (C), Guanine (G), and Thymine (T).

 All four nucleotides or DNA symbol are arranged in a
unique manner for 1000 symbols. We will use this
property to differentiate the suffix trees and suffix arrays of
different partitions.

 Genome indexing is a technique used to access the
DNA string or Genome sequence and extract that hereditary
information. An index is a data structure methodology
that improves the speed of data retrieval operations at the
cost of slower writes and increased storage space.

Asian Journal of Engineering and Applied Technology
ISSN: 2249-068X (P) Vol. 2 No. 1, 2013, pp.7-11

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajeat-2013.2.1.652

Indexing can be created using suffix tree data structure,
provides the basis for both rapid random lookups and
efficient access of ordered records.

 All hierarchical data structure includes indexing
technology that enables sub-linear time lookup to improve
performance, as linear search is inefficient for large datasets.
Indexing very large datasets is a tedious task, actually done
by automated systems. It is multi-level process, like the
cleaning of genomic sequence, partitioning of input
datasets, which is larger than main memory, and organizing
the data in a data structure.

 Suffix tree is a well suited data structure, which can
index the genome, efficiently. It builds the tree in linear
time and searches the string in linear time. The existing
methods like 1Trellis [1] and 2DiGeST [2] can index the
genomic data up to 3GB. We need a scalable suffix tree
algorithm that index the genome further 3 GB.

II. Background

 In computer science, a suffix tree (also called PAT tree
or, in an earlier form, position tree) [3] is a data structure
that presents the suffixes of a given string in a way that
allows for a particularly fast implementation of many
important string operations.

 The suffix tree for a string S is a tree whose edges
are labeled with strings, such that each suffix of the S
corresponds to exactly one path from the tree’s root to a
leaf. It is thus a radix tree (more specifically, a Patricia tree)
[4] for the suffixes of S. The suffix tree for the string S of
length n is defined as a tree such that:

7 AJEAT Vol.2 No.1 January - June 2013

1. The paths from the root to the leaves have a one- to-one
relationship with the suffixes of S.

2. Edges spell non-empty strings.

3. All internal nodes (except perhaps the root) have at least
two children.

 Since such a tree does not exist for all strings, S is
padded with a terminal symbol not seen in the string
(usually denoted $). This ensures that no suffix is a prefix
of another, and that there will be n leaf nodes, one for each
of the n suffixes of S. Since all internal non-root nodes are
branching, there can be at most n − 1 such nodes, and n +
(n − 1) + 1 = 2n nodes in total (n leaves, n − 1 internal
nodes, 1 root).

A. Compressed Suffix Tree

 Compressed suffix trees [5] can be implemented in O(n)
bits by using compressed suffix arrays and the techniques
for compact representation of Patricia tries. The
compressed suffix tree occupies space proportional to the
text size, i.e. O(n log | Σ |) bits, and supports all typical
suffix tree operations with at most log N factor slowdown.

Fig. 1 Suffix tree and suffix array

Fig. 2 Compressed Suffix tree

B. LCP Array

 The LCP-array [6] stores the lengths of the longest
common prefixes of lexicographically adjacent suffixes,
and it can be computed in linear time. We have modified
the LCP array according to our algorithm and store some
additional information; suffix start number with LCP
values of respective suffixes. Suffix array with LCP array
shown in figure 3.

III. ProBleM defInItIon

 Given a string X = X1, X2…XN-1 to be a sequence of N
symbols. The first N – 1 symbols are over a finite alphabet
Σ, Xi e Σ (0 ≤ i < N − 1). The last symbol XN-1 is unique
and not in Σ (called as string terminals).

 Given a genome sequence of length N, we have to
minimize the input output performance by reducing the
merging time of suffix trees.

IV. ProPosed Method

 The proposed algorithm works in three steps:

i. Input Preprocessing

 In this step, we encode the input string and make
partition, accordingly: A-00, C-01, G-10, T-11.

 For example, human genome of 3GB, by encoding
we can compress the data to (3*230)/4 = 768 MB, which
can now process in main memory. The input string X of
size N into k partitions, such that k=2r, where r=N/M, r
should be at least 2. For partitioning, we are using existing
Larsson’s algorithm, which uses quick sort with partition
strategy. Nesper Larsson [7] develops this algorithm for the
partitioning and sorting according to lexicographical order
[8].

ii. In-memory sorting of suffixes

 In this step we generate suffix arrays for each pair of
partitions. We compute the LCP between two suffixes.
Then, sort them according to lexicographical order. A
lexicographical order is the alphabetical order as in a
dictionary. We put LCP value and starting index of suffix
in the suffix array, which is to be used in merging those
suffix arrays as compressed suffix tree (CST). We use
LCP information for pairwise sorting [9] of two suffix
arrays. For in-memory sorting we use Larsson’s quicksort
algorithm which divides and sorting lexicographically.

AJEAT Vol.2 No.1 January - June 2013 8

Vijay Kumar Vishwakarma and Abhishek Srivastava

Fig. 3 Suffix arrays and LCP array

Fig. 4 Node of Compressed suffix tree

Fig. 5 Flow of the proposed algorithm

Fig. 6 Initial empty compressed suffix tree

Fig. 7 Insertion of DE(A,5,0)

iii. Pairwise sorting and merging

 At the end of sorting step, we have on disk k suffix
arrays for k partitions (of total size N). Then we have to
create a compressed suffix tree for each pair of suffix arrays,
by comparing their LCP value. Let there be two suffix
arrays; A and B. If LCP of A is less than or equal to LCP
of B, then put the regarding suffix into the output buffer.
Continue the process for all pairs of suffix arrays. There
will be k-1compressed suffix tree for k suffix arrays. We use
2pmms algorithm [10] to merge all the suffix arrays. Note
the lexicographical order must be maintained.

Structure of node for compressed suffix tree

 Create k number of input buffers for k number of
partitions and use the remaining amount of main memory
as output buffer. Using two phase multi-way merge sort
for external memory, then read input block from two
suffix arrays (LCP values) and compare them, if LCP of
SAx is smaller or equal to SAy then, we write SAN(suffix
array number), SSN(suffix start number), and LCP (longest
common prefix) value to the output buffer as a node. If the
output buffer is full then, we read the output buffer and
write all the nodes to the secondary memory in a file, where
all nodes of the compressed suffix tree exists.

 Using this approach we reduced the number of suffix
trees and create the compressed suffix tree in sequential
order, so that searching will takes place in sequential
order. There is no random access to the input string. So, we
can say that 100 percent of random access is removed.

 Above Figure 6 shows the empty suffix tree, we have
to compare the LCP(A[0]) and LCP(B[0]), LCP(A[0])
is equal to LCP(B[0]), then insert the NODE regarding
LCP(A[0]) with relevant information like suffix array
number, suffix start number, LCP value of corresponding
suffix. Below Figure 7 shows the suffix tree after insertion
of NODE(A,5,0). The NODE(A,5,0) is linked to the root
of the suffix tree, which was NULL (in previous Figure 6),
after the insertion of NODE(A,5,0) the pointer of suffix
array A will be incremented and now compare LCP(A[1])
and LCP(B[0]).

9 AJEAT Vol.2 No.1 January - June 2013

Indexing Genome with the External Construction of Compressed Suffix Tree Using LCP Array

 Similarly, compare the LCPs values of LCP array [6]
A and B, and whichever is smaller or equal than insert the
node in suffix tree, rewardingly, give priority to former
suffix array (here suffix array A) if the LCP values of both
the suffix arrays are equal. After inserting all nodes into the
suffix tree, will be shown in Figure 8. At the end of merging
the nodes of both the suffix array, we check the output
buffer is full or not. If full, then, we write the nodes of
output buffer to secondary memory, otherwise continue the
merging process with next suffix arrays. (E.g. BC, then
CD and so on).

 Similarly, create the compressed suffix tree for BC, CD
and so on, sequentially. We have collection of nodes in
the output buffer, if the output buffer is full, then we will
empty it to secondary memory by writing all the nodes. In
this way, we have all the nodes of the compressed suffix
tree in a file, which has information about all the
connected nodes. All files are linked with each other by the
tail (t<1000), the tail is the prefix of next partition, which
is attached to the previous partition for differentiating the
partition and its suffix arrays.

V. exPerIMental results

 The simulation has been performed on Ubuntu
Linux 10.4, with 3 GB RAM, 4MB L2 cache, Intel i3 core
processor of 2.26 GHz. Developed in c++ (gcc compiler)
and executed in TPIE environment.

Fig. 8 Final compressed suffix tree after inserting all nodes

 The reason of running time of proposed algorithm
is; first, the input data is encoded and compressed,
and hence, can process more data in main memory.
Compressed data lead to less number of partitions and less
number of suffix arrays, by which LCP array is created with
useful and relevant information. Second, the input data are
accessed, sequentially and while merging two suffix arrays
as one compressed suffix tree is also in sequential order.
Thus, there is no random access to the input data. Finally,
creating compressed suffix tree is an advantage of running
time.

Fig. 9 Comparison among running time of algorithms (Bar chart)

Fig. 10 Comparison among running time of algorithms (Line chart

Table I RunnIng TIme of DIffeRenT algoRIThm

AJEAT Vol.2 No.1 January - June 2013 10

Vijay Kumar Vishwakarma and Abhishek Srivastava

 By seeing the results above, we can say that the proposed
algorithm is much better than that of Trellis and DiGeST
algorithms, in terms of time complexity, space complexity
and I/O complexity.

 The advantage of using a compressed suffix tree is that
we can save secondary memory space for the number of
generating trees, and one more advantage is that the use
of suffix link, efficiently, which makes all the nodes and
compressed suffix tree connected and hence, the search time
of any gene or DNA word, will be easier and faster. The use
of suffix link with a compressed suffix tree is efficiently
minimized the random access of input data. The whole
input data is accessed sequentially.

VI. conclusIon

 The proposed algorithm is better in terms of time
complexity and it can scale itself to index genome further
12GB, but DiGeST algorithm is limited to scale the data up
to 12GB. So, we can say that proposed algorithm is scalable
because the algorithm performs in LCP array construction.

 The algorithms perform well in practice and can be
successfully used for indexing all substrings in databases of
long strings, especially of sequenced genomes. We believe
that these algorithms are important steps towards a fully
scalable solution for constructing full-text indexes on disk
for inputs of any type and size. Once this is done, a whole
world of new possibilities will be opened, especially in the
field of biological sequence analysis.

References

[1] Benjarath Phoophakdee and Mohammed J. Zaki, “Genome-scale
disk-based suffix tree indexing”. SIGMOD ‘07: Proceedings of the
ACM SIGMOD International Conference on Management of Data.
ACM. pp. 833–844, 2007.

[2] Marina Barsky, Ulrike Stege, Alex Thomo, and Chris Upton . “A
new method for indexing genomes using on-disk suffix trees”. CIKM
‘08: Proceedings of the 17th ACM Conference on Information and
Knowledge Management. ACM. pp. 649–658, 2008.

[3] http://en.wikipedia.org/wiki/Suffix_tree

[4] Donald R. Morrison, “PATRICIA – Practical Algorithm To
Retrieve Information Coded in Alphanumeric”, Journal of the ACM,
Vol. 15, NO 4, pp. 514-534, 1968.

[5] Niko Välimäki, Wolfgang Gerlach, Kashyap Dixit and Veli Mäkinen,
“Compressed Suffix Tree - A Basis for Genome-scale Sequence
Analysis”. Bioinformatics, 23(5), Application note, pp 629-630, 2007

[6] Simon Gog, Enno Ohlebusch, “Fast and Lightweight LCP-Array
Construction Algorithms”, ALENEX, 2011.

[7] N.J. Larsson and K. Sadakane, “Faster suffix sorting”, Tech.
Rep. LUCS-TR: 99-214 of the Dept. of Comp. Sc., Lund University,
Sweden, 1999.

[8] http://en.wikipedia.org/wiki/Lexicographical_order

[9] Md. Jahangir Alam, Muhammad Monsur Uddin, Mohammad Shabbir
Hasan, Abdullah Al Mahmood, “ Pair Wise Sorting: A New Way of
Sorting”, International Journal of Computer Science and Information
Security, Volume 8:9, pp. 116-120,2010.

[10] Simonas Salteni, “External memory sorting”, Deptt.
Of Computer Science, Aalborg University, Denmark, LNCS,
pp 1-7, 2001.

11 AJEAT Vol.2 No.1 January - June 2013

Indexing Genome with the External Construction of Compressed Suffix Tree Using LCP Array

