
Asian Journal of Engineering and Applied Technology          
ISSN: 2249-068X (P) Vol.6 No.2, 2017, pp.9-13 
      ©The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ajeat-2017.6.2.823 

Managing the Data Effectively Using Object Relational Data Store
T. Sivagamasundari

Research Scholar, Department of Computer Science, PRIST University. Tanjavur, Tamil Nadu, India 
E-Mail: siva0tamil@gmail.com

Abstract - The collection of interrelated data, usually referred 
to as the database, contains information relevant to an 
enterprise. The primary goal of Database Management System 
is to provide a way to store and retrieve database information 
that is both convenient and efficient. Management of data 
involves both defining structures for storage of information 
and providing mechanisms for the manipulation of 
information. A relational database consists of a collection of 
relations, each of which is assigned a unique name. The 
relational database contains a set of objects used to store, 
access, and manage data. The set of objects includes tables, 
views, indexes, aliases, distinct types, functions, procedures, 
sequences, and packages Managing the data effectively using 
Object Relational Data Store (ORDS) is a Object Oriented 
Relational Database. It provides object oriented enabled 
features. It ensures the safety of information stored, despite 
system crashes or attempts at unauthorized access. If data to 
be shared among several users, the system will avoid possible 
anomalous results. It is designed to perform very well with 
most typical SQL  operations.  
Keywords: Relational Embeddable Database, object-relational 
database, Object Oriented Relational Database, applications 
programming interfaces 

I. INTRODUCTION

ORDS is designed to support the SQL standard, and 
provides a very full-featured implementation. It supports 
strong encryption. It doesn't require a database administrator 
or any external configuration files. Create a database by 
connecting to it. It's as simple as that. We have to just 
include the qed.jar file in your class path and use the 
standard JDBC interfaces. ORDS provides robust data 
protection and data recovery features. Committed 
transactions won't be lost, even if your application crashes 
at an "inopportune" time. Furthermore, ORDS makes it easy 
to perform online backups of your database, either based on 
a schedule, or at a time of your choosing. 

A. Importance Choosing

ORDS is proven as a high-performance, easy-to-use, and 
affordable database that gives you more flexibility than 
proprietary solutions. The embedded server library makes 
ideally suited for object oriented database needs. ORDS 
provides robust data protection and data recovery features. 
Committed transactions won't be lost, even if your 
application crashes at an "inopportune" time. Furthermore, 
ORDS makes it easy to perform online  
Backups of your database either based on a schedule, or at a 
time of your choosing. ORDS supports strong encryption. 

ORDS is designed to support the SQL standard, and 
provides a very full-featured ORDS implementation. The 
embedded server library makes ideally suited for embedded 
database needs. 

B. Scope of The Present Work

Object relational systems are complex data types and it 
needs powerful query languages and high protection for the 
data. This is general but some database systems blur the 
boundaries. For example, some object oriented database 
systems built around a persistent programming language are 
implemented on top of a relational database system. Such 
systems may provide lower performance than object 
oriented database systems built directly on a storage system, 
but provides some of the stronger protection guarantees of 
relational systems. Many object-relational database systems 
are built on top of existing relational database systems. 

1.Joins

ORDS has a very simple join plan. Tables are joined left to 
right, with the left table being the outer, the right table being 
the inner table, in a series of nested inner loop INNER 
JOINs wherever possible. Any kind of equijoin or join on 
columns will use this approach. Failing a common column, 
we'll resort to a cross join, which is a full cartesian product. 
The inner table in the cross join is iterated for every row of 
the outer, leading to possibly very long run times. 

2. Concurrency

ORDS fully supports concurrent access, while maintaining 
SERIALIZABLE isolation and ACID properties. ORDS's 
Lock Manager supports a hierarchical lock tree which uses 
multiple lock modes to permit multiple readers and a single 
writer to each database structure. Locking is performed at 
the table level. Table locking implies that sometimes 
programs will block, waiting for a table lock, if it's in use by 
other transactions in an "inconsistent" mode. Table locking 
is also (as with any two-phase locking approach) subject to 
deadlock. ORDS inelegantly resolves this using a 
configurable "lock timeout" parameter.  

In general, these limitations related to concurrency are the 
result of a conscious design compromise: ORDS's target 
architecture isn't designed to maximize concurrent 
performance. Rather, the objective is to be small and fast 
for typical (i.e., single user). 

9 AJEAT  Vol.6 No.2  July-December 2017

(Received 21 May 2017; Revised 3 June 2017; Accepted 30 June 2017; Available online 8 July 2017)



II. REVIEW OF LITERATURE

A. Object Relational Database 

Database is a collection of information organized in such a 
way that a computer program can quickly select desired 
pieces of data. We can think of a database as an electronic 
filing system. Traditional databases are organized by fields, 
records, and files. a field is a single piece of information; a 
record is one complete set of fields; and a file is a collection 
of records. 

A relational database is a database that can be perceived as 
a set of tables and can be manipulated in accordance with 
the relational model of data. The relational database 
contains a set of objects used to store, access, and manage 
data. The set of objects includes tables, views, indexes, 
aliases, distinct types, functions, procedures, sequences, and 
packages In object relational models extend the relational 
data model by providing a richer type system including 
complex data types and object orientation. Relational query 
languages, in particular sql, need to be correspondingly 
extended to deal with the richer type system. Such 
extensions attempt to preserve the relational foundations, in 
particular, the declarative access to data- while extending 
the modeling power. 

B. Key Consideration 

1. Delivering a Better "Out-of-the Box" Experience
2. Full Relational Database Functionality
3. Lower Price & Total Cost of Ownership
4. Cross-platform Portability
5. Shorter Time to Market
6. Shorter Sales Cycle
7. Superior Performance, Scalability and Reliability
8. Small Footprint
9. Ease of Use
10. Administration

III. METHODOLOGY

ORDS consists of various processing stages. Each stage 
represents a level of processing the database. The Relational 
Embeddable Database implements SQL and JDBC 2.0. 

A. Linking To Storage System 

In order to access a database, you need to obtain a JDBC 
Connection object. There are two basic ways to get a 
database connection: Using the JDBC Driver Manager 
interface, you can directly obtain a JDBC Connection, if we 
know, the name of the JDBC Driver class 
(com.quadcap.jdbc.JdbcDriver). The database 
URL(jdbc:ORDS:database-name). Overallserver 
configuration information is also managed through the 
Config "service".  

ORDBMSs possess storage manager facilities similar to 
RDBMSs. Disk space is taken under the control of the 
RDBMS, and data is written into it according to whatever 
administrative rules are specified. All the indexing, query 
processing, and cache management techniques that are part 
of an RDBMS are also used in an ORDBMS. Further, 
distributed database techniques can be adapted to 
incorporate user-defined types and functions. However, all 
of these mechanisms must be re-implemented to generalize 
them so that they can work for user-defined types. For 
example, page management is generalized to cope with 
variable length OPAQUE type objects. You can also 
integrate code into the engine to implement an entirely new 
storage manager. 

Fig.1 Extensible Storage Management 

Performance & Administration 

ORDS is designed to perform very well with most typical 
SQL operations. It requires zero administration. Still, 
sometimes you  want to administer your data with ORDS, 
the database is simply a directory in the file system 
containing files accessed via a JDBC url using the ORDS 
JDBC driver. 

B. Connection 

The Relational Embeddable Database implements SQL92 
and JDBC 2.0. Connecting to the database in order to access 
a database, you need to obtain a JDBC Connection object. 
There are two basic ways to get a database connection: 

1. The name of the JDBC Driver class
(com.quadcap.jdbc.JdbcDriver)

2. The database URL (jdbc:qed:database-name)
3. Any connection parameters.

         C. Design of the Object-Relational Database 
         

The object-oriented methods used for the design of the 
systems with object-relational databases are based on the 
concepts of object and classes of objects and allow the use 
of three different models for designing an object-relational 
database: the static model by which are modeled objects and 

10

 

AJEAT  Vol.6 No.2  July-December 2017

T. Sivagamasundari



the relations between them; the dynamic model by which 
are described interactions between objects; the functional 
model by which are transformed data values using 
operations and processes.  

        D. Object-Relational Database Technology 

The object-relational database technology occurrence can be 
traced back to the middle of 1990s after emergence of 
object-oriented database (OODB). In their book “Object-
relational DBMSs: the Next Great Wave”, define their four-
quadrant view (two by two matrix) of the data processing 
world: relational database, object-relational database, data 
file processing, and object-oriented database.  

 Practically, ORDBMS bridges the gap between OODBMS 
and RDBMS by allowing users to take advantage of 
OODB'MSs great productivity and complex data type 
without losing their existing investment in relational data. In 
fact, an ORDBMS engine supports both relational and 
object-relational features in an integrated fashion. The 
u0nderlying ORDB data model is relational because object 
data is stored in tables or columns. ORDB designers can 
work with familiar tabular structures and data definition 
languages (DDLs) while assimilating new object-oriented 
features. It is essentially a relational data model with object-
oriented extensions. In response to the evolutional change of 
ORDB technology, SQL:1999 started supporting object-
relational data modeling features in database management 
standardization and SQL:2003 continues this evolution. 
Currently, all the major database vendors have upgraded 
their relational database products to object-relational 
database management systems to reflect the new SQL 
standards [9] and ready to be used by industrial 
practitioners.  

E. ORDBMS  for Object Integration 

The beauty of ORDBMSs is reusability and sharing. 
Reusability mainly comes from storing data and methods 
together in object types and performing their functionality 
on the ORDBMS server, rather than have the methods 
coded separately in each application. Sharing comes from 
using user-defined standard data types to make the database 
structure more standardized. 

F. Database Stored Procedures 

Almost all RDBMSs allow you to create database 
procedures that implement business processes. This allows 
developers to move considerable portions of an information 
system’s total functionality into the DBMS. Although 
centralizing CPU and memory requirements on a single 
machine can limit scalability, in many situations it can 
improve the system’s overall throughput and simplify its 
management. 

Fig.2 ORDBMS as the Object Server Architecture 

 G.  Design and Implementation Tools 

UML is used as a tool for ORDBMS design. UML is a new 
modeling tool developed by the Object Management Group. 
UML development was spearheaded by Rational Software 
Corp. Although the UML technology was developed mainly 
for software design, the important part of this technology, 
classes and methods, are roughly equivalent to ORDBMS 
types and methods. 

In UML class diagrams, a class is displayed as a box (see 
figure 1) that include three sections: the top section gives 
the class name; the middle section includes the attributes for 
individual objects of the class; and the last section includes 
methods that can be applied to these objects.      

Fig. 3UML Class Diagram 

IV. RESULTS AND DISCUSSIONS

ORDBMSs possess storage manager facilities similar to 
RDBMSs. Disk space is taken under the control of the 
ORDBMS, and data is written into it according to whatever 
administrative rules are specified. All the indexing, query 
processing, and cache management techniques that are part 
of an RDBMS are also used in an ORDBMS. Further, 

11 AJEAT  Vol.6 No.2  July-December 2017

Managing the Data Effectively Using Object Relational Data Store



distributed database techniques can be adapted to 
incorporate user-defined types and functions. However, all 
of these mechanisms must be re-implemented to generalize 
them so that they can work for user-defined types. For 
example, page management is generalized to cope with 
variable length OPAQUE type objects. You can also 
integrate code into the engine to implement an entirely new 
storage manager. 

Fig.4 Development flow of the applications with object-relational 
databases 

A. Distributed Deployment 

Often the volume of data in a single information system, or 
the workload imposed by its users, is too much for any one 
computer. Storing shared data, and providing efficient 
access to it, requires that the system be partitioned or 
distributed across several machines. Combining 
extensibility with distributed database features makes new 
system architectures possible. A large central machine 
contains canonical copies of all data. Surrounding it is a 
cloud of other, smaller installations.  

An ORDBMS’s system catalogs become a metadata 
repository that records information about the modules of 
programming logic integrated into the ORDBMS. Over 
time, as new functionality is added to the application and as 

the programming staff changes, the system’s catalogs can be 
used to determine the extent of the current system’s 
functionality and how it all fits together.  

Fig.5 Distributed Information System Deployment 

V. FINDINGS 

In spite of many advantages, ORDBMSs also had 
drawbacks. The architecture of object-relational model is 
not appropriate for high-speed web applications. However, 
with advantages like large storage capacity, access speed, 
and manipulation power of object databases, ORDBMSs are 
set to conquer the database market. In summary, relational 
and object-oriented database systems each have certain 
strengths as well as certain weaknesses. In general, the 
weakness of one type of system tends to be strength of the 
other. 

The contribution Object relational data store uniquely 
provides guidelines on how to use ORDBMS to overcome 
relational database existing problems and improve database 
performance in the database development using ORDBMS 
features. There is some research that has been done in 
ORDBMS technology as ORDBMSs have become 
commonplace in recent years. 

So far very little research has been done in using ORDBMS 
to overcome relational database weaknesses and solve some 
existing normalization problems. This paper provides the 
guidelines for the traditional relational database 
practitioners to solve existing problems using ORDB 
technology. Many traditional database practitioners consider 
the ORDBMS technology as complex results in the loss of 
the essential simplicity and purity of the relational database 
model and stay away from it. There is a need to provide 
these professionals with the guidelines for their specific use 
for their future database development. This paper presents 
the script templates for them to implement ORDB 
technology in their career. 

12

 

AJEAT  Vol.6 No.2  July-December 2017

T. Sivagamasundari



   

We find that the benefits of the object-oriented methods in 
comparison with the structured one, recommend the object-
oriented approach in the case of object-relational databases 
design. Since object-oriented methodologies and methods 
have some limitations as well as many differences (in terms 
of symbols, notations or types of diagrams), it was needed a 
standard for modeling that can be widely applied in creating 
new systems or the maintenance of systems. 
 

VI. CONCLUSION 
 

ORDS provides object oriented features, robust data 
protection and data recovery features. Committed 
transactions won't be lost,      even if your application 
crashes at an "inopportune" time. Furthermore, ORDS 
makes it easy to perform online backups of your database, 
either based on a schedule, or at a time of your choosing. 
ORDS is proven as a high-performance, easy-to-use, and 
affordable database that gives you more flexibility than 
proprietary solutions. The embedded server library makes 
ideally suited for embedded database needs. 
 
Although the user-defined methods are defined with object 
data within the object type, they can be shared and reused in 
multiple database application programs. This can result in 
improved operational efficiency for the IT department, as 
well, by improving communication and cooperation 
between applications. An object-relational database schema 
consists of a number of related tables that forms connected 
user-defined object-types. Object-types possess all the 
properties of a class, data abstraction, encapsulation, 
inheritance and polymorphism. These traits of object-types 
are embedded in the relational nature of the database; data 
model, security, concurrency, normalization. In more 

precise words, the underlying ORDB data model is 
relational because object data is stored in tables or columns. 
 
The Destination Sequenced Distance Vector (DSDV) 
protocol is a proactive routing protocol based upon the 
distributed Bellman Ford algorithm . In this routing 
protocol, each mobile host maintains a table consisting of 
the next-hop neighbor and the distance to the destination in 
terms of number of hops. It uses sequence numbers for the 
destination nodes to determine “freshness” of a particular 
route, in order to avoid any short or longlived routing loops. 
If two routes have the same sequence number, the one with 
smaller distance metric is advertised. The sequence number 
is incremented upon every update sent by the host. All the 
hosts periodically broadcast their tables to their neighboring 
nodes in order to maintain an updated view of the network. 

 
REFERENCES 

 
[1] V.T. Almeida, R.H. Güting,., and  T. Behr,  Querying moving 

objects in secondo. In Proceedings of the 7th International 
Conference on Mobile Data Management 2006. 

[2] L. Becker, H. Blunck,, K. Hinrichs,  & J. Vahrenhold.,  A framework 
for representing moving objects. In Proceedings of DEXA, pp. 854-
863, 2004. 

[3] R.G.G. Cattel and  D.K. Barry, (eds.).  The object database 
Standard: ODMG 2.0. Morgan Kaufmann Publishers, 1997. 

[4] S. Dieker and  R.H Güting, “ Plug and play with query algebras: 
Secondo. A generic dbms development environment,”. In 
Proceedings of Int’l Symp. on Database Engineering and 
Applications (IDEAS),  pp. 380-390 , 2000. 

[5] C. Düntgen, T. Behr,  and  R.H  Güting,   “Berlinmod: a benchmark 
for moving object databases,”  The VLDB Journal, Vol.18,No.6, pp. 
1335-1368, 2009. 

[6] E. Frentzos, N. Pelekis., I. Ntoutsi,  and  Y. Theodoridis,  
“Trajectory database systems,”  In F. Giannotti and D. Pedreschi 
(eds), Mobility, Data Mining and Privacy. Springer, 2008. 

 
 

 
 
 

 
 
 

13

 

AJEAT  Vol.6 No.2  July-December 2017

Managing the Data Effectively Using Object Relational Data Store




