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Abstract – The paper presents a novel GA/PSO self regulating 
diesel driven AC induction motor controlled drive system 
using the common AC-DC-AC bus interface for industrial 
applications and electric vehicle EV-locomotion. The proposed 
control scheme utilizes the dual regulation multi loop error 
driven	 controller	 using	 the	 novel	 modified	 proportional	 plus	
integral	 plus	 derivative	 PID	 structure	 with	 the	 added	 error	
rate compensating auxiliary loop. The EV-drive is fed from the 
AC-DC-AC	interface	of	a	six-pulse	controlled	rectifier	–DC	link	
and six-pulse voltage source inverter VSI using a coordinated 
dual	action	control	scheme	for	firing	angle	control.	 	The	diesel	
engine	 is	 controlled	 to	 ensure	dynamic	of	power	demand	with	
dynamic	voltage	and	current	tracking.	A	dynamic	error	driven	
control scheme is proposed to regulate the motor current to limit 
any inrush currents and overloading conditions, in addition 
to	motor	 speed	 dynamic	 reference	 tracking.	The	 Proposed	 tri	
loop dynamic error driven self regulated-tuned controllers are 
also	 utilized	 to	 ensure	 dynamic	 energy	 efficiency,	 control	 loop	
decoupling,	 drive	 stability	 and	 the	 unified	 system	 efficient	
energy	 utilization	 while	maintaining	 accurate	 speed	 reference	
tracking.	The	paper	presents	soft-computing	application	of	both	
Multi	 Objective	 Particle	 Swarm	 Optimization	 (MOPSO)	 and	
Genetic	search	MOGA	optimization	and	search	techniques	for	
dynamic online gain-tuning to optimally adjust the settings of 
the proposed controllers.

Keywords: Diesel-Driven Generator Set, Induction Motor Drive, 
Electric Vehicles, Multi Objective Optimization MOO, Particle 
Swarm	Optimization	PSO	and	Genetic	Algorithm

I. IntroductIon

 Due to environmental concerns and increasing restrictions 
imposed on the exhaust emissions from internal combustion 
engines in the urban areas, a strong demand for the 
development of efficient electrical propulsion systems for 
automotive applications[1-2]. Electric vehicle is one of the 
solutions for the reduction of the fossil fuel consumption and 
pollutant emissions of gas, responsible for the green house 
effect [3-4]. By using diesel driven vehicle, it is expected 
that the fuel economy of a diesel vehicle can be enhanced 
using dual fuel injection engines capable of burning other 
types of bio-fuels and bio diesels [5]. The savings in fuel 
and flexibility will promote the new use of diesel engines in 
electric vehicle drives. It would also benefit national interests, 
as this would lead to a reduction in dependence on fossil oil 
supply [6] and promote the use of bio-fuels. Electric Vehicle 
drives and propulsion systems can utilize either AC or DC 
motor drives including efficient Permanent Magnet DC 
motors [6-8]. The induction motor has been selected as the 
electric vehicle drive motor for its competitive advantages of 

being small, light, less expensive, more reliable and almost 
maintenance free [7-8]. Different classical  PI, PID, fuzzy 
logic based, nonlinear, adaptive variable structure, model 
reference adaptive control, artificial neural networks, feed 
forward computed torque control strategies were proposed 
and utilized in speed regulation and position control 
applications [9-10] mostly using fixed gains and control 
settings. Nonlinear drive dynamics, mechanical inertia, 
friction load variations and parametric sensitivities due to 
saturation and temperature changes requires a flexible, fast 
and effective online regulation and gain adjusting/tuning 
methods. Several AI-related soft computing techniques, such 
as Genetic Algorithms GA and Particle Swarm Optimization 
PSO are emerging as valuable, robust, simple and effective 
tools in industrial process automation and on-line control 
adaptation [11-14]. All soft computing tools are flexible 
and reliable with strong universal property independent of 
gradient information and structured optimization tools. In 
this paper, a diesel engine powering an induction motor-
EV drive propulsion system is fully studied. The scheme 
is controlled by a novel Modified PID control strategy that 
are dynamically regulated and self tuned using PSO and GA 
random search and optimization algorithms.  The PSO and 
GA based self regulating algorithms are utilized to track any 
reference speed trajectory under varying parameter and load 
conditions. The coordinated control system comprises three 
different regulators used to track speed reference trajectory. 
The proposed novel coordinated control scheme has been 
validated for effective and accurate speed reference trajectory 
tracking and enhanced power utilization. 

 Genetic algorithm is an optimization method inspired by 
Darwin’s reproduction and survival of the fittest individual 
[15]. This algorithm looks for the fittest individual from a 
set of candidate solutions called population. The population 
is exposed to crossover, mutation and selection operators to 
find the fittest individual. The fitness function assesses the 
quality of each individual in evaluation process. The selection 
operator ensures the fittest individuals for the next generation. 
The crossover and mutation operators are used for variety of 
populations. 

 Particle Swarm Optimization (PSO) is an evolutionary 
computation optimization technique (a search method based 
on a natural system) developed by Kennedy and Eberhart [16]-
[19]. The system initially has a population of random selective 
solutions. Each potential solution is called a particle. Each 
particle is given a random velocity and is flown through the 
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problem space. The particles have memory and each particle 
keeps track of its previous best position (called the Pbest) and 
its corresponding fitness. There exist a number of Pbest for the 
respective particles in the swarm and the particle with greatest 
fitness is called the global best (Gbest) of the swarm. The basic 
concept of the PSO technique lies in accelerating each particle 
towards its Pbest and Gbest locations, with a random weighted 
acceleration at each time step. 

II. MultI-objectIve optIMIzatIon

 The following definitions are used in the proposed Multi- 
Objective Optimization (MO) search algorithm [20-22]:

 Definition 1: The general MO problem requiring the 
optimization of N objectives may be formulated as follows:

Minimize
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y is the objective vector, the ( )xgi
   represents the constraints 

and *x  is a P-dimensional vector representing the decision 
variables within a parameter space Ω  .. The space spanned 
by the objective vectors is called the objective space. The 
subspace of the objective vectors satisfying the constraints is 
called the feasible space.

Definition 2 : A decision vector Ω∈1x   is said to dominate the 
decision vector Ω∈2x   (denoted by 21 xx 



  ), if the decision 
vector  

1x  is not worse than 
2x  in all objectives and strictly 

better than 
2x   in at least one objective.

Definition 3 : A decision vector Ω∈1x  is called Pareto-optimal, 
if there does not exist another Ω∈2x  that dominates it. An 
objective vector is called Pareto-optimal, if the corresponding 
decision vector is Pareto-optimal.

Definition 4 : The non-dominated set of the entire feasible 
search space Ω is the Pareto-optimal set. The Pareto-optimal 
set in the objective space is called Pareto-optimal front.

 The Non-Dominated Sorting Genetic Algorithm (NSGA) 
is a multi-objective genetic algorithm that was developed 
by Deb, et. al. [23]. This algorithm has been chosen over a 
conventional genetic algorithm for three principal reasons: 
(a) no need to specify a sharing parameter, (b) a strong 
tendency to find a diverse set of solutions along the Pareto 
optimal front, and (c) the ability to specify multiple objectives 
without the need to combine them using a weighted sum. The 
basic idea behind NSGA is the ranking process executed 
before the selection operation, as shown in Fig. 2. This 
process identifies non dominated solutions in the population, 

at each generation, to form non dominated fronts [24], after 
this, the selection, crossover, and mutation usual operators 
are performed. In the ranking procedure, the non dominated 
individuals in the current population are first identified. 
Then, these individuals are assumed to constitute the first 
non dominated front with a large dummy fitness value [24]. 
The same fitness value is assigned to all of them. In order 
to maintain diversity in the population, a sharing method is 
then applied. Afterwards, the individuals of the first front are 
ignored temporarily and the rest of population is processed 
in the same way to identify individuals for the second non 
dominated front. A dummy fitness value that is kept smaller 
than the minimum shared dummy fitness of the previous front 
is assigned to all individuals belonging to the new front. This 
process continues until the whole population is classified into 
non dominated fronts. Since the non dominated fronts are 
defined, the population is then reproduced according to the 
dummy fitness values.

 In MOPSO [20-22], a set of particles are initialized in 
the decision space at random. For each particle i, a position 
xi in the decision space and a velocity vi are assigned. The 
particles change their positions and move towards the so far 
best-found solutions. The non-dominated solutions from the 
last generations are kept in the archive. The archive is an 
external population, in which the so far found non-dominated 
solutions are kept. Moving towards the optima is done in 
the calculations of the velocities and position of the particle 
According to equations (4) and (5) respectively as follows:
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     Where   P ,P dp,dr,  are randomly chosen from a single 
global Pareto archive,  is the inertia factor influencing the 
local and global abilities of the algorithm, Vi,d is the velocity 
of the particle i in the dth dimension, c1 and c2 are weights 
affecting the cognitive and social factors, respectively. r1 
and r2 are two uniform random functions in the range [0 , 1]. 
According to (4), each particle has to change its position Xi,d 
towards the position of the two guides Pr,d, Pp,d which must 
be selected from the updated set of non-dominated solutions 
stored in the archive. The particles change their positions 
during generations until a termination criterion is met. Finding 
a relatively large set of Pareto-optimal trade-off solutions is 
possible by running the MOPSO for many generations. Figure 
3 shows the flow chart of the Multi-Objective Particle Swarm 
Optimization (MOPSO).

III.  ac-dc-ac ev-drIve Interface

 The electric vehicle drive system is fed from a diesel 
drive generator set interfaced to an AC-DC-AC interface via 
a six-pulse controlled rectifier, DC link filter and the six-pulse 
voltage source inverter feeding the induction motor. The 
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AC-DC-AC drive scheme is regulated using dynamic self 
adjusting multi loop error driven coordinated GA/PSO self 
regulating/gain adjusting control scheme. Figures (3-7) show 
the proposed AC-DC-AC interface for the electric vehicle 
drive system with the diesel generator set source. The novel 
PSO and GA self tuned multi regulators and coordinated 
controller are used for the following purposes:
1) The Diesel generator set valve control regulator is for 

dynamic load matching as well as stabilization of the 
common AC bus. The Diesel generator set comprises 
three time de-scaled loops for power demand control with 
dynamic generator voltage and current tracking. 

2) AC/DC power controlled rectifier regulator to regulate 
the DC voltage at the Diesel engine AC bus and ensure 
limited inrush conditions as well as dynamic DC power 
matching to reduce current transients and improve energy 
utilization.   

3) The speed controller of the voltage source inverter to 
ensure reference speed trajectory tracking and optimized 
slip control for loss reduction using a current hysteresis 
control.

 The unified AC-DC-AC interface scheme is fully 
validated using the Matlab/Simulink software environment 
under normal conditions, induction motor torque changes. 
Other excursion conditions in the diesel engine generator set 
are also introduced to assess the control system robustness, 
effective energy utilization and speed reference tracking.

 The proposed control system comprises three sub-
regulators or controllers named as a Diesel DC generator 
set value control regulator, the induction motor drive speed 
controller, and the AC/DC power converter regulator. Figures 
(4-7) depict the proposed multi-loop dynamic self regulating 
controllers based on Multi Objective Optimization search 
and optimization technique based on soft computing PSO 
and GA. The global error is the summation of the three loop 
individual errors including voltage stability, current limiting 
and synthesize dynamic power loops. Each multi loop 
dynamic control scheme is used to reduce a global error based 
on a tri-loop dynamic error summation signal and to mainly 
track a given speed reference trajectory loop error in addition 
to other supplementary motor current limiting and dynamic 
power loops are used as auxiliary loops to generate a dynamic 
global total error signal.

 A number of conflicting objective functions are selected 
to optimize using the PSO algorithm. These functions are 
defined by the following:
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 The dynamic error driven controller regulates the 
controllers’ gains using the Particle Swarm optimization PSO 
and GA to minimize the system total error, the settling time, 
the rising time, and the maximum overshoot. The proposed 
dynamic Tri Loop Error Driven controller, developed by 
the First Author, is a novel advanced regulation concept 
that operates as an adaptive dynamic type multi-purpose 
controller capable of handling sudden parametric changes, 
load and/or DC source excursions. By using the Tri Loop 
Error Driven controller, it is expected to have a smoother, 
less dynamic overshoot, fast and more robust speed controller 
when compared to those of classical control schemes. The 
proposed general PMDC Motor Drive Model with the novel 
Tri Loop Error Driven controller are fully validated in this 
paper for effective reference speed trajectory tracking under 
different loading conditions and parametric variations; such 
as temperature changes while driving a complex mechanical 
load with non-linear parameters and/or torque-speed 
characteristics.

Iv. dIgItal SIMulatIon reSultS

 The induction motor driven Electric Vehicle AC-DC-AC 
scheme using the Diesel generation system performance is 
compared for three different speed references. In the first 
speed track, the speed increases linearly and reaches the 1 
PU at the end of the first five seconds, and then the reference 
speed remains speed constant during five seconds. At tenth 
second, the reference speed decreases with same slope as at 
the first five seconds. After fifteen second, the motor changes 
the direction and EV increases its speed through the reverse 
direction. At twentieth second, the reference speed reaches 
the -1 PU and remains constant speed at the end of twenty 
fifth second and then the reference speed decreases and 
becomes zero at thirtieth second. The second reference speed 
waveform is sinusoidal and its magnitude is 1 PU and the 
period is 12 seconds. The third reference track is constant 
speed reference starting with an exponential track. In all 
references, the system responses have been observed. The 
digital simulation results validated the effectiveness of both 
GA and PSO based tuned controllers in providing effective 
speed tracking minimal steady-state errors. Transients are 
also damped with minimal overshoot, settling time, and fall 
time. The GA and PSO based self tuned controllers are more 
effective and dynamically advantageous in comparison with 
the Artificial Neural Network (ANN) controller, the Fuzzy 
Logic Controller (FLC) and fixed type controllers. The self 
regulation is based on minimal value of absolute total/global 
error of each regulator. The control system comprises the 
three dynamic multi loop error driven regulator is coordinated 
to minimize the selected objective functions. SOO obtains 
a single global or near optimal solution based on a single 
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weighted objective function. The weighted single objective 
function combines several objective functions using specified 
or selected weighting factors as follows:

5544332211 JJJJJJo aaaaa ++++=   (11)

 Where α1 = 0.20, α2 = 0.20, α3 = 0.20, α4 = 0.20, α5 = 
0.20 are selected weighting factors. J1, J2, J3, J4, J5 are the 
selected objective functions. On the other hand, the MO finds 
the set of acceptable (trade-off) Optimal Solutions. This set 
of accepted solutions is called Pareto front. These acceptable 
trade-off multi level solutions give more ability to the user to 
make an informed decision by seeing a wide range of near 
optimal selected solutions. 

 Figures (7-12) show the effectiveness of PSO and GA 
search and optimized control gains in tracking the induction 
motor EV motor three reference speed trajectories.

 Table I shows the Induction Motor-Electric Vehicle 
dynamic behavior comparison using the Traditional 
controllers for the three selected reference tracks under 
normal conditions. In addition, Table II shows the Induction 
Motor-Electric Vehicle dynamic behavior comparison using 
the GA and PSO based Self Tuned Modified PID dynamic 
controller for the three selected reference tracks under normal 
conditions. Comparing the Induction Motor-EV dynamic 
response results of the two study cases, with GA and PSO 
tuning algorithms and traditional controllers with constant 
controller gains, ANN controller and FLC, it is quite apparent 
that the GA and PSO tuning algorithms highly improved the 
Induction Motor-EV system dynamic performance from a 
general power quality point of view. The GA and PSO tuning 
algorithms had a great impact on the system efficiency 
improving it from 0.8085 (constant gains controller), 0.8257 
(ANN controller) and 0.8232 (FLC) to around 0.8694 
(SOGA based tuned controller), 0.8831 (MOGA based 
tuned controller), 0.8867 (SOPSO based tuned controller) 
and 0.9030 (MOPSO based tuned controller) which is 
highly desired. The Motor Power Factor is improved from 
0.8532 (constant gains controller), 0.8879 (ANN controller) 
and 0.8875 (FLC) to around 0.9175 (SOGA based tuned 
controller), 0.9354 (MOGA based tuned controller), 0.9261 
(SOPSO based tuned controller) and 0.9416 (MOPSO 
based tuned controller). The Root Mean Square RMS of 
Motor current (PU) is improved from 0.85211 (constant 
gains controller), 0.8228 (ANN controller) and 0.8213 
(FLC) to around 0.7531 (SOGA based tuned controller), 
0.7306 (MOGA based tuned controller), 0.7427 (SOPSO 
based tuned controller) and 0.7209 (MOPSO based tuned 
controller). Total Harmonic Distortion THD of Motor Voltage 
× 100 % is improved from 0.2583 (constant gains controller), 
0.2236 (ANN controller) and 0.2290 (FLC) to around 0.0613 
(SOGA based tuned controller), 0.0505 (MOGA based tuned 
controller), 0.0623 (SOPSO based tuned controller) and 

0.0534 (MOPSO based tuned controller). Total Harmonic 
Distortion THD of Motor Current × 100 % is improved from 
0.2643 (constant gains controller), 0.2284 (ANN controller) 
and 0.2237 (FLC) to around 0.0721 (SOGA based tuned 
controller), 0.0699 (MOGA based tuned controller), 0.0613 
(SOPSO based tuned controller) and 0.0430 (MOPSO based 
tuned controller).

v. concluSIon

 The GA/PSO self adjusting-tunable gain multi 
regulation coordinated controllers are fully validated using 
the MATLAB-SIMULINK software environment. The 
EV-Induction motor drive system fed from a diesel driven 
generator set is fed to the controlled six-pulse rectifier for 
coordinated speed control and DC-bus dynamic stabilization.  
The EV-Drive locomotive scheme is fully validated for 
effective and accurate tracking of three different speed 
reference trajectories under motor mechanical load torque 
variations and prime mover excursions diesel engine 
fuel valve changes. The use of dynamic multi loop with 
decoupled time de-scaled error driven structure and PSO/
GA adaptable self regulation is also validated. The Multi 
Objective Optimization MOPSO and MOGA techniques are 
utilized to adjust all proposed controllers’ gains and settings 
to minimize the total absolute deviation error. The iterative 
search and optimization results show the effectiveness of 
both Multi Objective Particle Swarm Optimization (MOPSO) 
and MOGA techniques to maintain the system power quality. 
The proposed novel control schemes have been validated for 
effective dynamic speed reference trajectory tracking with 
enhanced energy utilization.
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Fig. 5 Tri-loop error driven self regulating Modified PID dynamic controller for the common DC side - GPFC Scheme

Fig. 6 Tri-loop error driven self regulating Modified PID dynamic controller for the diesel engine generator set
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Fig. 7 Induction Motor Electric Vehicle Drive System dynamic response for the first speed track using GA

Fig. 8 Induction Motor Electric Vehicle Drive System dynamic response for the first speed track using PSO

Fig. 9 -Induction Motor Electric Vehicle Drive System dynamic response for the second speed track using GA
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Fig. 10 Induction Motor Electric Vehicle Drive System dynamic response for the second speed track using PSO

Fig. 11 Induction Motor Electric Vehicle Drive System dynamic response for the third speed track using GA

Fig. 12 Induction Motor Electric Vehicle Drive System dynamic response for the third speed track using PSO

0 1 0 20 3 0
-1

-0.5

0

0.5

1
speed curve

Tim e(sec)
sp

ee
d(

P
U

)

0 1 0 20 3 0
-2

-1

0

1
x 1 0

-3 Speed E rror curve

Tim e (sec)

S
pe

ed
 E

rr
or

0 1 0 20 3 0
-1

0

1

2

3
x 1 0

-3 Current E rror curve

Tim e (sec)

C
ur

re
nt

 E
rr

or

0 1 0 20 3 0
-2

-1

0

1

2
x 1 0

-3 G lobal E rror Curve

Tim e (sec)

G
lo

ba
l E

rr
or

0 1 0 20 3 0
-0.5

0

0.5

1
speed curve

Tim e(sec)

sp
ee

d(
P

U
)

0 1 0 20 3 0
0

0.5

1

1 .5

2
x 1 0

-3 Speed E rror curve

Tim e (sec)

S
pe

ed
 E

rr
or

0 1 0 20 3 0
-2

0

2

4
x 1 0

-3 Current E rror curve

Tim e (sec)

C
ur

re
nt

 E
rr

or

0 1 0 20 3 0
-2

0

2

4
x 1 0

-3 G lobal E rror Curve

Tim e (sec)

G
lo

ba
l E

rr
or

0 1 0 20 3 0
-0.5

0

0.5

1
speed curve

Tim e(sec)

sp
ee

d(
P

U
)

0 1 0 20 3 0
-1 .5

-1

-0.5

0
x 1 0

-3 Speed E rror curve

Tim e (sec)

S
pe

ed
 E

rr
or

0 1 0 20 3 0
-1

0

1

2

3
x 1 0

-3 Current E rror curve

Tim e (sec)

C
ur

re
nt

 E
rr

or

0 1 0 20 3 0
-2

-1

0

1

2
x 1 0

-3 G lobal E rror Curve

Tim e (sec)

G
lo

ba
l E

rr
or

AJES Vol.1 No.1  January - June 20129

An Optimal Energy Utilization Self Adjusting Variable Speed Drive Scheme for Large Locomotive Drives



table i induction motor-electric vehicle dynamic behavior comparison using the traditional controllers under normal conditions

table ii induction motor-electric vehicle dynamic behavior comparison using the ga and pso based self tuned modified pid

controller under normal conditions
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