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Abstract - In this paper a novel method of de-noising 
phonocardiogram by time-frequency Overlapping Group 
Shrinkage method is described. In this method sigma, the 
standard deviation of the stationary noise present in a noisy 
phonocardiogram is found using activity detection. This noise 
is then canceled by attenuating it in the time frequency 
domain. The accuracy of noise reduction is measured by SNR. 
Overlapping Group shrinkage algorithm reduces the effect of 
noise by attenuating them using hard or soft thresholding. 
Performance of this method was found to be far better 
compared to other methods such as Soft Thresholding and 
Block Thresholding. 
Keywords- Block thresholding, Activity detection, soft 
thresholding, overlapping group shrinkage. 

I.INTRODUCTION

     Phonocardiogram is a tool used by doctors to look at 
well-being of any person. Often this phonocardiogram is 
corrupted by noise from the environment. These noises are 
usually buzzing and humming sounds from environment, 
hospital sounds and other artifacts. They hinder the 
detection of low frequency mild sounds and lead to false 
detection. So enhancement of phonocardiogram along with 
noise reduction becomes important. Preliminary literature 
survey shows that there exist many noise reduction 
algorithms for phonocardiograms with both merits and 
demerits. This paper discusses time frequency Overlapping 
Group Shrinkage algorithm along with soft thresholding and 
Block Thresholding method. Section 2 discusses heart 
sound model. Section 3 discusses estimation of heart sound 
using activity detection. Section 4 discusses the heart sound 
reduction method using Overlapping Group Shrinkage. 
Section 5 discusses about the obtained results. 

II.HEART SOUND MODEL

     Consider a noisy heart sound signal 𝑥𝑥. It consists of the 
stationary noise 𝑛𝑛. The noise is a random noise with an 
unknown probability density function (pdf) with zero mean 
[2]. Let the short-time Fourier transform STFT of 𝑥𝑥 be 
given by (1).  

𝑋𝑋𝑚𝑚𝑘𝑘 = ∑ 𝑥𝑥[𝑛𝑛 + 𝑚𝑚𝑚𝑚]𝑒𝑒−𝑗𝑗
2𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁𝐿𝐿−1

0      (1) 

If we consider that the STFT coefficients of 𝑥𝑥 are a 
weighted sum of samples of length 𝑚𝑚 of the corresponding 
random process, then as per central limit theorem, as  𝑚𝑚→∞, 
the STFT coefficients 𝑋𝑋𝑚𝑚𝑘𝑘  asymptotically have Gaussian   
pdf with zero mean [2]. The pdf of the kth frequency bin 𝑋𝑋𝑚𝑚𝑘𝑘  
can be expressed as shown in (2) 

𝑝𝑝(𝑋𝑋𝑚𝑚𝑘𝑘 ) = 1
𝜋𝜋𝜆𝜆𝑁𝑁(𝑘𝑘)

𝑒𝑒{− �𝑋𝑋𝑚𝑚𝜋𝜋 �
2

𝜆𝜆𝑁𝑁(𝑘𝑘)
}  (2) 

Thus, the variance of DFT of noise 𝜆𝜆𝑁𝑁(𝑘𝑘) is equivalent to 
the MMSE estimation of noise power. 

The signal 𝑥𝑥 contains heart sound for which 𝑥𝑥 = 𝑠𝑠 + 𝑛𝑛. 
Activity detection of Phonocardiogram compares the 
probabilities of presence or absence of heart sound as per 
the hypothesis stated in (3). 

𝐻𝐻0:𝑋𝑋𝑚𝑚𝑘𝑘 = 𝑁𝑁𝑚𝑚𝑘𝑘 , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒
𝐻𝐻1:𝑋𝑋𝑚𝑚𝑘𝑘 = 𝑆𝑆𝑚𝑚𝑘𝑘 + 𝑁𝑁𝑚𝑚𝑘𝑘 ,ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒

 (3) 

Where 𝑆𝑆𝑚𝑚𝑘𝑘 ,𝑁𝑁𝑚𝑚𝑘𝑘  𝑒𝑒𝑛𝑛𝑠𝑠 𝑋𝑋𝑚𝑚𝑘𝑘  are K-dimensional STFT vectors of 
phonocardiogram (PCG), noise and noisy PCG respectively. 
Pdf of 𝑥𝑥, given H0 is given by (2). Pdf of 𝑥𝑥, given H1 is 
given by (4). 

𝑝𝑝(𝑋𝑋𝑚𝑚𝑘𝑘 ) = 1
𝜋𝜋(𝜆𝜆𝑁𝑁(𝑘𝑘)+𝜆𝜆𝑆𝑆(𝑘𝑘))

𝑒𝑒{− �𝑋𝑋𝑚𝑚𝜋𝜋 �
2

𝜆𝜆𝑁𝑁(𝑘𝑘)+𝜆𝜆𝑆𝑆(𝑘𝑘)
}  (4)

Where 𝜆𝜆𝑁𝑁(𝑘𝑘) = 𝐸𝐸[|𝑁𝑁𝑚𝑚𝑘𝑘 |2] and 𝜆𝜆𝑆𝑆(𝑘𝑘) = 𝐸𝐸[|𝑆𝑆𝑚𝑚𝑘𝑘 |2] denote 
variance of PCG and noise variance respectively. 
The likelihood ratio at the kth frequency bin is given by (5) 
as per the following [4]. 

Λ𝑘𝑘 = 𝑝𝑝(𝑋𝑋𝜋𝜋|𝐻𝐻1)
𝑝𝑝(𝑋𝑋𝜋𝜋|𝐻𝐻0)

= 1
1+𝜉𝜉𝜋𝜋

𝑒𝑒
�
𝛾𝛾𝜋𝜋𝜉𝜉𝜋𝜋
1+𝜉𝜉𝜋𝜋

�
       (5) 

𝜉𝜉𝑘𝑘 = 𝜆𝜆𝑆𝑆(𝑘𝑘)/𝜆𝜆𝑁𝑁(𝑘𝑘) and 𝛾𝛾𝑘𝑘 = |𝑋𝑋𝑚𝑚𝑘𝑘 |2/𝜆𝜆𝑁𝑁(𝑘𝑘) are defined as 
priori and posteriori snr respectively. 

III.ESTIMATION OF NOISE IN PCG

In practice, we do not have an infinite length noise 
sequence. The most common method of noise estimation 
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given a finite length noise sequence is periodogram 
estimation given by (6)[2]. 
�̂�𝜆𝑚𝑚𝑁𝑁(𝑘𝑘) = |𝑋𝑋𝑚𝑚𝑘𝑘 |2 (6) 
 
where 𝑋𝑋𝑚𝑚𝑘𝑘  is the STFT of noise only signal 𝑥𝑥 in the mth 
frame as defined in (1). We use Bartlett’s theorem to reduce 
the variance �̂�𝜆𝑁𝑁𝑚𝑚(𝑘𝑘) by averaging the M frames. 
𝜆𝜆̅𝑁𝑁(𝑘𝑘) = 1

𝑀𝑀
∑ �̂�𝜆𝑁𝑁𝑚𝑚(𝑘𝑘)𝑀𝑀−1
1                     (6) 

 
This method requires a length LM sequence of noise only 
observations. 𝜆𝜆̅𝑁𝑁(𝑘𝑘) is an unbiased and consistent estimator 
of 𝜆𝜆𝑁𝑁(𝑘𝑘): E [𝜆𝜆̅𝑁𝑁(𝑘𝑘)] = 𝜆𝜆𝑁𝑁(𝑘𝑘)  (7) 

E [(𝜆𝜆̅𝑁𝑁(𝑘𝑘) − 𝜆𝜆𝑁𝑁(𝑘𝑘))2] = 1
𝑀𝑀
𝜆𝜆𝑁𝑁(𝑘𝑘)2 (8) 

 
However, Eqs. (7) and (8) do not imply that 𝜆𝜆̅𝑁𝑁(𝑘𝑘) predicts 
any particular instance of |𝑁𝑁𝑚𝑚𝑘𝑘 |2 with high accuracy: 
|𝑁𝑁𝑚𝑚𝑘𝑘 |2is exponentially distributed, so its standard deviation 
equals its mean. 
Considering the PCG presence uncertainty, the MMSE 
estimate of the noise at the kth frequency bin in the mth 
frame given current noisy observation is mentioned in (2) 

 
�̂�𝜆𝑁𝑁𝑚𝑚(𝑘𝑘) = 𝐸𝐸[|𝑁𝑁𝑚𝑚𝑘𝑘 |2|𝑋𝑋𝑚𝑚𝑘𝑘 ] = 𝐸𝐸[|𝑁𝑁𝑚𝑚𝑘𝑘 |2|𝐻𝐻0]𝑝𝑝(𝐻𝐻0|𝑋𝑋𝑚𝑚𝑘𝑘 ) + 𝐸𝐸[|𝑁𝑁𝑚𝑚𝑘𝑘 |2|𝐻𝐻1]𝑝𝑝(𝐻𝐻1|𝑋𝑋𝑚𝑚𝑘𝑘 )   (9) 
 

Using Bayes rule, 𝑝𝑝(𝐻𝐻0|𝑋𝑋𝑚𝑚𝑘𝑘 ) = 𝑝𝑝�𝑋𝑋𝑚𝑚𝜋𝜋 �𝐻𝐻0�𝑝𝑝(𝐻𝐻0)
𝑝𝑝�𝑋𝑋𝑚𝑚𝜋𝜋 �𝐻𝐻0�𝑝𝑝(𝐻𝐻0)+𝑝𝑝�𝑋𝑋𝑚𝑚𝜋𝜋 �𝐻𝐻1�𝑝𝑝(𝐻𝐻1)

= 1
1+𝜖𝜖Λ𝑚𝑚𝜋𝜋

  (10) 

Where 𝜖𝜖 = p(H1|H0) and Λ𝑚𝑚𝑘𝑘 = 𝑝𝑝(𝑋𝑋𝑚𝑚𝑘𝑘 |𝐻𝐻1)|𝑝𝑝(𝑋𝑋𝑚𝑚𝑘𝑘 |𝐻𝐻0) is the likelihood ratio of mth frame given in (4). 

Similarly, 𝑝𝑝(𝐻𝐻0|𝑋𝑋𝑚𝑚𝑘𝑘 ) = 𝜖𝜖Λ𝑚𝑚𝜋𝜋

1+𝜖𝜖Λ𝑚𝑚𝜋𝜋
  (11) 

 
If 𝛽𝛽𝑘𝑘𝑚𝑚 =  𝑝𝑝(𝐻𝐻1|𝑋𝑋𝑚𝑚𝑘𝑘 )  then �̂�𝜆𝑚𝑚𝑁𝑁(𝑘𝑘) = 𝛽𝛽𝑘𝑘𝑚𝑚𝐸𝐸[|𝑁𝑁𝑚𝑚𝑘𝑘 |2|𝐻𝐻1] + (1 − 𝛽𝛽𝑘𝑘𝑚𝑚)2𝐸𝐸[|𝑁𝑁𝑚𝑚𝑘𝑘 |2|𝐻𝐻0] (12) 
 
Sohn and Sung [7] proposed that, under the hypothesis H0, 
we can use the current noisy observation, 𝐸𝐸[|𝑁𝑁𝑚𝑚𝑘𝑘 |2|𝐻𝐻0] =
|𝑋𝑋𝑚𝑚𝑘𝑘 |2 (13). Under hypothesis H1, |𝑋𝑋𝑚𝑚𝑘𝑘 |2 contains PCG as 
well as noise, and is therefore not an accurate estimate of 
the noise power. 
 
Assuming that the activity detection of PCG with 
probability 𝛽𝛽𝑘𝑘𝑚𝑚 has been correctly estimated in all previous 
frames, the best available estimate of the noise is 
𝐸𝐸[|𝑁𝑁𝑚𝑚𝑘𝑘 |2|𝐻𝐻1] = �̂�𝜆𝑁𝑁𝑚𝑚−1(𝑘𝑘) (14). From (12), (13) and (14) we 
have �̂�𝜆𝑚𝑚𝑁𝑁(𝑘𝑘) = 𝛽𝛽𝑘𝑘𝑚𝑚�̂�𝜆𝑁𝑁𝑚𝑚−1(𝑘𝑘) + (1 − 𝛽𝛽𝑘𝑘𝑚𝑚)2|𝑋𝑋𝑚𝑚𝑘𝑘 |2 . (15) 
 
Sohn and Sung [8] proposed that, if 𝛽𝛽𝑘𝑘𝑚𝑚 is an accurate 
estimate of the PCG presence probability in each frame, 
then (15) is an equally accurate estimate of the noise power 
in the mth frame. Under these circumstances, �̂�𝜆𝑚𝑚𝑁𝑁(𝑘𝑘) takes 
into account all information about the underlying noise 
process that can be extracted from frames up to and 
including the current frame. 
 
The autoregressive noise estimator 𝜆𝜆�𝑚𝑚𝑁𝑁(𝑘𝑘)  proposed in Eq. 
(15) is optimal, if and only if the PCG presence probability 
estimate 𝛽𝛽𝑘𝑘𝑚𝑚 is accurate. Unfortunately, under low SNR 
conditions 𝛽𝛽𝑘𝑘𝑚𝑚is a random variable with high variance.  𝛽𝛽𝑘𝑘𝑚𝑚 
is a  sigmoid transformation of a random variable |𝑋𝑋𝑚𝑚𝑘𝑘 |2 

given by 𝛽𝛽𝑘𝑘𝑚𝑚 = 𝑒𝑒

�𝑋𝑋𝑚𝑚
𝜋𝜋 �

2

𝑎𝑎𝜋𝜋𝜆𝜆𝑁𝑁(𝜋𝜋)

𝑒𝑒

�𝑋𝑋𝑚𝑚
𝜋𝜋 �

2

𝑎𝑎𝜋𝜋𝜆𝜆𝑁𝑁(𝜋𝜋)+
𝑎𝑎𝜋𝜋
𝜖𝜖

 (16), where 𝑒𝑒𝑘𝑘 = 1+𝜉𝜉𝜋𝜋
𝜉𝜉𝜋𝜋

. The input 

threshold to sigmoid function 𝜃𝜃𝑘𝑘 = 𝑒𝑒𝑘𝑘𝜆𝜆𝑁𝑁(𝑘𝑘)log (𝑎𝑎𝜋𝜋
𝜖𝜖

) 
obtained by finding the value of  |𝑋𝑋𝑚𝑚𝑘𝑘 |2 at 𝛽𝛽𝑘𝑘𝑚𝑚 = 0.5. In 
noise only frames where |𝑁𝑁𝑚𝑚𝑘𝑘 |2 > 𝜃𝜃𝑘𝑘 the value of 𝛽𝛽𝑘𝑘𝑚𝑚 = 1 

indicates a false positive even in the absence of PCG. 
Therefore, autoregressive estimator underestimates noise 
and overestimates PCG in any given frame. To solve this 
problem 𝛽𝛽𝑘𝑘𝑚𝑚is modelled as binary random variable-a unit 
step function of |𝑁𝑁𝑚𝑚𝑘𝑘 |2.Let us define ρ=P (𝛽𝛽𝑘𝑘𝑚𝑚 ≥ 0.5). The 
parameter evaluates to  𝜌𝜌 = ∫ 𝑒𝑒−𝑡𝑡𝑠𝑠𝑒𝑒 = (∞

𝑎𝑎𝜋𝜋log (
𝑎𝑎𝜋𝜋
𝜖𝜖 ) 

𝑎𝑎𝜋𝜋
𝜖𝜖

)−𝑎𝑎𝜋𝜋 

(17). The expected value of autoregressive estimator 
approximates to  
 
E (�̂�𝜆𝑚𝑚𝑁𝑁(𝑘𝑘)) = 𝜌𝜌(�̂�𝜆𝑚𝑚−1

𝑁𝑁(𝑘𝑘) + 𝜆𝜆𝑁𝑁(𝑘𝑘)[1 − 𝜌𝜌 + 𝜌𝜌𝜌𝜌𝑠𝑠𝜌𝜌𝜌𝜌] (18) 
 
In high noise PCG there is noise propagation error as seen 
in (16). If the noise process is known to be stationary, and if 
the first M frames of the signal are known to contain no 
PCG, then an a priori periodogram estimate 𝜆𝜆̅𝑁𝑁(𝑘𝑘) of E 
[|𝑁𝑁𝑚𝑚𝑘𝑘 |2] with known standard error may be computed using 
Eq. (6). If we assume that intervening frames provide no 
further information about E [|𝑁𝑁𝑚𝑚𝑘𝑘 |2], then  
 
E [|𝑁𝑁𝑚𝑚𝑘𝑘 |2|𝐻𝐻1] = 𝜆𝜆�̅�𝑁(𝑘𝑘). (19)          
 �̂�𝜆𝑚𝑚𝑁𝑁(𝑘𝑘) = 𝛽𝛽𝑘𝑘𝑚𝑚𝜆𝜆̅𝑁𝑁(𝑘𝑘) + (1 − 𝛽𝛽𝑘𝑘𝑚𝑚)|𝑋𝑋𝑚𝑚𝑘𝑘 |2 (20) 
 
This method does not propagate error. Instead, a false-
positive frame is treated just like any other frame about 
which we have no certain knowledge of the noise spectrum: 
the noise estimate is backed off to the a priori noise 
estimator 𝜆𝜆̅𝑁𝑁(𝑘𝑘)[8]. The present noise spectrum estimation 
method can be interpreted as a posteriori MMSE estimate of 
the noise power in the current frame, when the noise process 
is stationary but with high variance. 
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IV.TIME FREQUENCY OVERLAPPING GROUP 

SHRINKAGE ALGORITHM 
 

In recent years, many algorithms based on sparsity have 
been developed for signal de-noising. These algorithms 
often utilize nonlinear scalar shrinkage/ thresholding 
functions of various forms which have been devised so as to 
obtain sparse representations. Examples of such functions 
are the hard and soft thresholding functions [8], and the 
nonnegative garrote [9,10]. Numerous other scalar 
shrinkage/thresholding functions have been derived as MAP 
or MMSE estimators using various probability models, e.g. 
[11,12,13]. 
 
For the purpose of de-noising, the regularization parameter 
λ is chosen analogous to the `three-sigma' rule. The method 
allows for λ to be selected so as to ensure that the noise 
variance is reduced to a specified fraction of its original 
value. This method does not aim to minimize the mean 
square error or any other measure involving the signal to be 
estimated, and is thus non-Bayesian. [6]. Let y be the 
standard deviation of the Gaussian noise in the PCG. Then, 
y~ N (0,1) and let us define x=soft (y, T). Then the variance 
of x as a function of threshold T is given by, 𝜎𝜎𝑥𝑥2(𝑇𝑇) =
𝐸𝐸[𝑥𝑥2] = ∫ (|𝑦𝑦| − 𝑇𝑇)2𝑝𝑝𝑦𝑦(𝑦𝑦) 𝑠𝑠𝑦𝑦 = 2(1 + 𝑇𝑇2)𝑄𝑄(𝑇𝑇) −|𝑦𝑦|>𝑇𝑇

𝑇𝑇�2
𝜋𝜋
𝑒𝑒
−𝑇𝑇2
2   (21), where 𝑝𝑝𝑦𝑦(𝑦𝑦) is the standard normal pdf N 

(0,1) and 𝑄𝑄(𝑇𝑇) = 1
√2𝜋𝜋

∫ 𝑒𝑒
−𝑡𝑡2
2

∞
𝑇𝑇 𝑠𝑠𝑒𝑒 = 0.5 �1 − erf � 𝑇𝑇

√2
��. [6] 

Figure 1a shows that standard deviation σx(t) is a function 
of threshold T. Soft thresholding uses 3σ rule to attenuate 
noise. The `3σ rule' states that nearly all values of a 
Gaussian random variable lie within three standard 
deviations of the mean (in fact, 99:7%). Since the variance 
of x is unity here, the 3σ rule suggests setting the threshold 
to T = 3 which leads to σx (3) = 0.020. 
 
The graph in Fig. 1a generalizes the 3σ rule: Given a 
specified output standard deviation σx, the graph shows how 
to set the threshold T in the soft threshold function so as to 
achieve it, i.e., so that E [soft (y, T)2] =σ2

x where y ~ N (0, 
1). For example, to reduce the noise standard deviation σ to 
one percent of its value, we solve σx(T) = 0.01 for T to 
obtain T = 3.36σ. This threshold is greater than that 
suggested by the 3σ rule. OGS provides the alternate 
solution for this type of problem. In OGS we set the 
regularization parameter λ as the threshold for PCG 
detection in the presence of noise. However, for OGS there 
is no explicit formula such as (21) relating λ to σx. Indeed, 
in the overlapping group case [6], neither is it possible to 
reduce E[x2] to a univariate integral as in (21) due to the 
coupling among the components of y, nor is there an 
explicit formula for x in terms of y, but only a numerical 
algorithm. Although no explicit analogue of (21) is 
available for OGS, the functional relationship can be found 
numerically. Let y be i.i.d. N (0, 1) and define x as the 
output of the OGS algorithm: x = ogs(y; λ, K). The output 

standard deviation σx can be found by simulation as a 
function of λ for a fixed group size. For example, consider 
applying the OGS algorithm to a two-dimensional array y 
using a group size of 3X3. 
 
For this group size, σx as a function of λ is illustrated in Fig. 
1b. The graph is obtained by generating a large two-
dimensional array of i.i.d. standard normal random 
variables, applying the OGS algorithm for a discrete set of 
λ, and then computing the standard deviation of the result 
for each λ. Once this graph is numerically obtained, it 
provides a straight forward way to set λ so as to reduce the 
noise to a specified level. For example, to reduce the noise 
standard deviation λ down to one percent of its value, we 
should use λ=0.43σ in the OGS algorithm according to the 
graph in Fig. 1b. It can be observed in Fig. 1 that the 
function σx (.) has a sharper `knee' in the case of OGS 
compared with soft thresholding. 
  
Graphs for numerous group sizes show that in general the 
larger the group, the sharper is the knee. Note that in 
practice λ should be chosen large enough to reduce the noise 
to a sufficiently negligible level, yet no larger so as to avoid 
unnecessary signal distortion. That is, suitable values of λ 
are somewhat near the knee. Therefore, due to the sharper 
knee, the de-noising process is more sensitive to λ for larger 
group sizes; hence, the choice of λ is more critical. 
Similarly, it can be observed in Fig. 1 that for OGS, the 
function σx(λ) follows a linear approximation more closely 
to the left of the `knee' than it does in the case of soft 
thresholding. 
  
The preceding sections described how the parameter λ may 
be chosen so as to reduce additive white Gaussian noise to a 
desired level. However, in many cases the noise is not 
white. For example, in the PCG de-noising example where 
the OGS algorithm is applied directly in the STFT domain. 
However, the STFT is an over-complete transform; 
therefore, the noise in the STFT domain will not be white, 
even if it is white in the original signal domain. In the PCG 
de-noising the noise is more highly correlated, the values of 
λ will be somewhat inaccurate. 
 
The penalty function (22) is suitable for stationary noise; 
however, in many applications, noise is not stationary. For 
example, in the problem of de-noising PCG corrupted by 
stationary coloured noise, the Variance of the noise in the 
STFT domain will vary as a function of frequency. In 
particular, some noise components may be narrowband and 
therefore occupy a narrow time-frequency region. The OGS 
penalty function and algorithm, as described in this paper, 
do not apply to this problem directly. The penalty function 
(4) and the process to select λ must be appropriately 
modified. The OGS algorithm as described above uses the 
same block size over the entire signal. In some applications, 
it may be more appropriate that the block size varies. For 
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example, in PCG de-noising, as noted and developed, it is 
beneficial that the block size in the STFT domain varies as a 
function of frequency (e.g., for higher temporal resolution at 

higher frequency). This problem is solved using Block 
thresholding algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1a. standard deviation vs threshold 
 
 
 
 
 

 
Fig 1b Overlapping group shrinkage (OGS) with group size 3 X 3 

 
 

V.TIME FREQUENCY BLOCK THRESHOLDING 
ALGORITHM 

 
 
A time frequency block estimator regularises the power 
subtraction by calculating a single attenuation factor. The 
time frequency plane is divided into I blocks Bi with 
arbitrary shape. For each Bi a single estimator 𝑓𝑓 is 
calculated with constant attenuation 𝑒𝑒𝑖𝑖 for the noisy signal. 
The noise characteristics are changed during the passage 
from time field to time-frequency field. It is still Gaussian 
(for all frequencies, the noise follows a centred normal law) 
but σ2 changes. Consider the discrete Fourier transform of 

the windowed noise. The Fourier coefficients of the noise is 
given by �̂�𝜂𝑘𝑘 = 1

√𝑊𝑊
∑ 𝑤𝑤𝑛𝑛𝜂𝜂𝑛𝑛exp (−2𝑖𝑖𝜋𝜋𝑘𝑘𝑛𝑛

𝑊𝑊𝑛𝑛 ) (23).  Var (�̂�𝜂𝑘𝑘) =
1
𝑊𝑊
𝑣𝑣𝑒𝑒𝑒𝑒[∑ 𝑤𝑤(𝑛𝑛)𝑛𝑛 𝜂𝜂𝑛𝑛 exp �−2𝑖𝑖𝜋𝜋𝑘𝑘𝑛𝑛

𝑊𝑊
� = 0.375𝜎𝜎2.  (24) 

 
The coefficients matrix is partitioned into macro-blocks and 
as the signal is real. This matrix has a symmetry between 
negative and positive frequencies thus it is enough to only 
treat the negative frequencies. The frequency 0 is treated 
separately. For the zero frequencies, we treat the points 
from the beginning to the end eight by eight (blocks 1x8): 

attenuation coefficient ai is 𝑒𝑒𝑖𝑖 = 1 − 1
𝜉𝜉𝑖𝑖+1

 with 𝜉𝜉𝑖𝑖 = 𝑌𝑌�𝑖𝑖
2

𝜎𝜎�𝑖𝑖
2. 

Where 𝑌𝑌�𝑖𝑖2 is the empirical mean on the block i. The real λ is 
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a parameter depending on the block size. The real λ controls 
the variance term which is due to the noise variation. It is 
computed with the following expression: 𝑃𝑃(𝜖𝜖2̅ > 𝜆𝜆𝜎𝜎2) < 𝛿𝛿. 
In this expression, 𝛿𝛿 is a parameter such as, with 𝛿𝛿 = 10-3, 
musical noises are barely audible. The blocks inside macro-

blocks are rectangles. Their sizes are Li X Wi where Li and 
Wi are respectively the length in time and the block width in 
frequency. The smallest rectangle has the size 1x2, 1 in 
frequency and 2 in times. With k = 1 (the redundancy 
factor), 𝜖𝜖2̅ is following a 𝜒𝜒2 distribution with the size of 

the block as degree of freedom. Due to discretization 
effects, λ takes roughly the same values for W i = 1 and Wi 
=2. So, to compute λ for W i = 1, we are doing the same as if 
Wi = 2. The following matrix gives the computed values of 

λ for different size of blocks (computed thanks to table I): 

M   =
1.5 1.8 2

   1.8 2 1.5
2 2.5 3.5

     
2.5 2.5
3.5 3.5
4.7 4.7

 

 
TABLE I LAMBDA VS BLOCK SIZE 

 
 
 
 
 
Even if an upper bound of the risk can be found, then it 
cannot be computed while the signal f is unknown. That is 
why we use an estimator of the risk which is found with the 
SURE theorem. This theorem is used to find the best block 
shapes into a macro-block by minimising this estimated 
risk. This is the SURE (Stein Unbiased Risk Estimate) 
theorem: Let Y be the noisy signal. It's a normal random 
vector with the identity as covariance matrix and of 
expectation F, which is the signal searched, without noise. 

So, Y = F + ε where ε~ N (0, Ip). F is estimated by Y + h 
(Y), where h is differentiable a.s. h: Rp → Rp and ∇. ℎ =
∑ 𝜕𝜕ℎ𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗

𝑝𝑝
𝑗𝑗=1 . Assuming E [∑ �

𝜕𝜕ℎ𝑗𝑗
𝜕𝜕𝑦𝑦𝑗𝑗
�𝑝𝑝

𝑗𝑗=1 ] < ∞, 𝑅𝑅 = 𝐸𝐸[‖Y +

 h (Y) − F‖2] = 𝑝𝑝 + 𝐸𝐸[‖ℎ(𝑌𝑌)‖2 + 2∇ℎ(𝑌𝑌)].𝑅𝑅� = 𝑝𝑝 +
‖ℎ(𝑌𝑌)‖22 + 2∇ℎ(𝑌𝑌) (25). 𝑅𝑅�  is an unbiased estimator of the 
risk R of Y+h(Y). We know that Yi+h(Yi)=aiYi is an 
estimator of F. Therefore, the kth-block risk is: 

 
𝑅𝑅𝑘𝑘 = ∑𝐸𝐸[|𝐹𝐹(𝑖𝑖, 𝑗𝑗) − 𝑒𝑒𝑘𝑘𝐹𝐹(𝑖𝑖, 𝑗𝑗)|2] = ∑𝐸𝐸[|𝐹𝐹(𝑖𝑖, 𝑗𝑗) − 𝑌𝑌(𝑖𝑖, 𝑗𝑗) − ℎ𝑌𝑌(𝑖𝑖, 𝑗𝑗)|2]  (26) 
 
Finally, the blocks are chosen to minimize 𝑅𝑅�𝑘𝑘. A 
macroblock is 8 points in time (horizontally) and 16 points 
in frequency (vertically). The beginning is time 1 and 

frequency -1. Each macroblock is treated independently. 15 
different subdivisions are tested and the best is kept. For a 
block, the risk can be computed by the following formula  

𝑅𝑅�𝑘𝑘 = 𝜎𝜎2(𝐵𝐵𝑘𝑘# + 𝜆𝜆2𝐵𝐵𝜋𝜋
#−2𝜆𝜆�𝐵𝐵𝜋𝜋

#−2�
𝑌𝑌
𝜎𝜎

1𝑌𝑌≥𝜆𝜆𝜎𝜎2 + 𝐵𝐵𝑘𝑘# �
𝑌𝑌
𝜎𝜎
− 2�1𝑌𝑌<𝜆𝜆𝜎𝜎2)  (27).  

 
This formula gives the estimation of the risk of the block i 
of size B#

i. It is obtained using the SURE theorem with: 
p=B#

i, h(Yi) = (ai -1) Yi. For a given subdivision, the 
estimation of the risk of the macro-block, is the sum of the 
risk estimations of each block of the subdivision. All the 15 
subdivisions are tested. The one with the minimal risk 
estimation is chosen. The attenuation coefficients are 
computed in the same way as for the zero frequency 
(formula (1)).  For the last blocks, which are not full in 
frequency, all the coefficients of each block are treated 
together like for the zero frequency. For the last few 
coefficients that do not make up a block, do hard 
thresholding. For positive frequencies, conjugate from the 
negative frequencies. 
 

VI.RESULTS AND DISCUSSION 
 
The experiments presented below have been performed on 
various types of PCG signals obtained from Peter Bentley’s 
PCG database [1]. The sounds are wav files sampled at 44.1 
kHz. They were corrupted by Gaussian noise of different 
amplitude. For each sound, de-noising with maximum noise 
removal were applied. The noise power was estimated using 

activity detection. [2] The database is a mixture of normal 
and abnormal PCG along with clicks and murmurs. Three 
methods were used for comparison namely soft thresholding 
(ST) [6][8], Overlapping group shrinkage (OGS) [6] and 
Block Thresholding. 
 
Figure 2a shows a noisy heart sound 201108222231 from 
the database. [1]. Figure 2b illustrates the STFT of the 
above sound calculated with 50% overlapping blocks of 
length of 512 samples. A well-known problem arising in 
many audio enhancement algorithms is that the residual 
noise is audible as `musical noise' [14] [15]. Musical noise 
may be attributed to isolated noise peaks in the time-
frequency domain that remain after processing. Figure 2c 
illustrates the STFT obtained by soft thresholding the noisy 
STFT, with threshold T. T is selected such that as the noise 
standard deviation reduces down to 0.1% of its value. T = 
3.26σ, where σ is the noise standard deviation of the noise 
in the STFT domain. The noise is sufficiently suppressed 
and the musical noise is clearly inaudible; however, the 
signal is distorted due to the relatively high threshold that is 
used. This is evident from sSNR of 3.07 dB and SNR of 
10.91 dB from tables 2 and 3. 

𝐵𝐵𝑖𝑖# 4 8 16 32 64 128 

λ 4.7 3.5 2.5 2.0 1.8 1.5 
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Figure 2a shows a noisy heart sound 201108222231 from 
the database. [1]. Figure 2b illustrates the STFT of the 
above sound calculated with 50% overlapping blocks of 
length of 512 samples. A well-known problem arising in 
many audio enhancement algorithms is that the residual 
noise is audible as `musical noise' [14] [15]. Musical noise 
may be attributed to isolated noise peaks in the time-
frequency domain that remain after processing. Figure 2c 
illustrates the STFT obtained by soft thresholding the noisy 
STFT, with threshold T. T is selected such that as the noise 
standard deviation reduces down to 0.1% of its value. T = 
3.26σ, where σ is the noise standard deviation of the noise 
in the STFT domain. The noise is sufficiently suppressed 
and the musical noise is clearly inaudible; however, the 
signal is distorted due to the relatively high threshold that is 
used. This is evident from sSNR of 3.07 dB and SNR of 
10.91 dB from tables 2 and 3. 
 
Fig. 2c is overly thinned. Methods to reduce musical noise 
includes over estimating the noise variance, imposing a 
minimum spectral noise floor [16], and improving the 
estimation of model parameters [13]. To avoid isolated 
spurious time-frequency noise spikes (to avoid musical 
noise), the grouping/clustering behaviour of STFT 
coefficients of PCG waveforms can be taken into account. 
To this end, a recent algorithm by Yu et al. [5] for 
speech/audio enhancement consists of time-frequency block 
thresholding. 
 
We note that the algorithm [5] is based on non-overlapping 
blocks. Similar to it [5], the OGS algorithm aims to draw on 
the grouping behaviour of STFT coefficients so as to 
improve the overall de-noising result, but it uses a model 
based on fully overlapping blocks. Figure 2d illustrates the 
result of block thresholding [3] using the software provided 

by the authors. It can be seen that block thresholding (BT) 
produces blocking arte-facts in the spectrogram. Figure 2d 
illustrates the result of Overlapping Group Shrinkage (OGS) 
applied to the noisy STFT.  25 iterations of the OGS 
algorithm were used. Based on listening to HS audio signals 
de-noised with various group sizes, a group size 8 * 2 (i.e., 
eight frequency bins * two time bins) was chosen. Other 
group sizes may be more appropriate for other sampling 
rates and STFT block lengths. As in the soft thresholding 
experiment, the parameter λ was selected so as to reduce the 
noise standard deviation down to 0.1% of its value. 
Regularization parameter λ was fixed as per λ = 0.32σ. 
While the sSNR 3.9 dB and SNR 11.9 dB is lower than 
block thresholding (sSNR 11.81 and SNR 18.63), the 
artefacts of the OGS de-noised PCG are less audible and 
musical noise is not audible. This was clearly evident from 
figure 2e (OGS) and 3d (BT). It was found in [16] that 
empirical Wiener post-processing (EWP), introduced in [6], 
improves the result of the block thresholding (BT) 
algorithm. This post-processing, which is computationally 
very simple, improves the result of OGS by an even greater 
degree than for BT, as measured by SNR improvement. The 
Wiener post-processing raises the SNR for BT from 15.35 
dB to 15.75 dB, while it raises the SNR for OGS from 11.9 
dB to 16.9 dB while for BT it goes from 18.63 dB to 20.0 
dB. Hence, the two methods give almost the same SNR 
after Wiener post-processing. The substantial SNR 
improvement in the case of OGS can be explained as 
follows: the OGS algorithm has the effect of slightly 
shrinking (attenuating) large coefficients which produces a 
bias and negatively affects the SNR of the de-noised signal. 
The Wiener post-processing procedure largely corrects that 
bias. It has the effect of rescaling (slightly amplifying) the 
large coefficients appropriately. 

 
 

TABLE II SNR OF SOUNDS FOR DIFFERENT METHODS 
 

Sounds & 
SNR (dB) ST 

(OGS-no 
wiener 

filtering) 

(OGS- 
wiener 

filtering) 

(BT-no 
wiener 

filtering) 

(BT- 
wiener 

filtering) 
201108222231 

(-4.24) 10.91 11.9 16.19 18.63 20.0 

201108222232 
(-9.58) 6.25 7.01 10.43 13.8 15.22 

201108222242 
(-9.91) 6.15 7.47 12.5 15.39 17.29 

201108222257 
(-10.33) 7.97 8.21 10.76 13.47 14.75 

201108222258 
(-3.08) 11.44 11.87 15.96 19.72 21.62 

201108222243 
(5.12) 17.3 19.78 27.63 18.59 18.68 

201108222256 
(-14.91) 6.48 6.58 8.49 11.56 12.55 
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TABLE III SSNR OF SOUNDS FOR DIFFERENT METHODS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2a noisy heart PCG 201108222231 

 
 

 

 
Fig. 2b STFT of noisy signal 

Sounds & 
sSNR (dB) ST 

(OGS-no 
wiener 

filtering) 

(OGS- 
wiener 

filtering) 

(BT-no 
wiener 

filtering) 

(BT- 
wiener 

filtering) 
201108222231 

(-8.81) 3.07 3.5 7.36 11.81 12.93 

201108222232 
(-9.61) 1.73 2.11 4.6 7.51 8.63 

201108222242 
(-9.62) 1.93 2.45 5.57 7.9 9.22 

201108222257 
(-9.66) 1.1 1.16 2.45 4.48 5.33 

201108222258 
(-8.89) 3.46 3.7 8.27 11.93 13.72 

201108222243 
(-4.56) 11.73 13.66 26.64 27.31 29.68 

201108222256 
(-9.87) 0.47 0.48 1.04 1.86 2.27 
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Fig. 2c Soft thresholded  PCG 
           
 
       

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2d Overlapping Group Shrinkage  PCG          
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                           
Fig. 2e BT PCG 
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Fig. 2f Wiener Filtered OGS PCG 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2g Wiener Filtered BT PCG 
                 
 

VII.CONCLUSION 
 
From the above work it is clear that both the methods Block 
thresholding algorithm [3] and OGS algorithm produces de-
noised signal with high SNR and sSNR. It is very evident 
that the so called time frequency structures namely musical 
noise rarely reoccur in BT and OGS methods. In case of BT 
algorithm, the SNR and sSNR are quite higher and the 
sounds are much louder with no artefacts as compared to 
OGS algorithm. Hence OGS algorithm is the recommended 
method for de-noising PCG signals especially in hospitals 

where background noise is a major hindrance in sound 
acquisition.  
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