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Abstract - This paper proposes a new analytical method for the 

design of decentralized Proportional-Integral (PI) controller 

for coupled tank process. The proposed design methodology 

aims to achieve the minimum interaction among the loops for 

Multi-Input Multi-Output (MIMO) process of first order with 

time delay. The decentralized controller is designed in terms of 

equivalent transfer function results from the pairing of MIMO 

process using Relative Normalized Gain Array (RNGA). The

effectiveness of the proposed controller is established through 

simulation and real time studies. The results demonstrate that 

the proposed design of decentralized controller gives less 

interaction response coupled with good robustness.  
Keywords: Decentralized Controller, Simple Internal Model 

Controller, Relative Normalized Gain Array, Coupled Tank

I. INTRODUCTION

The decentralized control scheme sometimes called as 
multiloop control scheme is one of the most common 
schemes used for control of MIMO plants in chemical and 
process industries. The main reason for this is it has many 
practical advantages such as a simple structure, fewer tuning 
parameters, robustness against sensor or actuator failures, 
and easy understanding. Hence, many decentralized tuning 
methods have been reported to tune the controller in the 
field of process control [1]. In spite of all the methods 
available, designing a MIMO controller for a large scale 
MIMO process is a troublesome task which may not 
necessarily propose good control performance due to the 
complexity of the controller design procedures involved. In 
this case, the design method of decentralized controller is 
reduced to design of single input single output (SISO) 
controllers by considering the effect of other inputs of the 
MIMO process as disturbance. Therefore, selection of good 
pairs is important to reduce this kind of disturbance [2]. 
There are many pairing methods available for MIMO 
system [3]. Relative gain array (RGA) [4] is the first and 
most popular and powerful tool in pairing. Each element of 
RGA matrix is a measure of the relation between the 
process gain of that pair and interactions from other pairs. 
But RGA is not sensitive to time constant and delay of the 
process. So later on, dynamic RGA (DRGA) was used for 
pairing, which used transfer function model at all 
frequencies instead of steady state gain matrix [5]. Desiring 
to keep the simplicity of RGA and to use dynamic 
information of process model a new concept called effective 
relative gain array (ERGA) was proposed [6]. The ERGA 

method was later enhanced as effective relative energy array 
(EREA) [7]. Since the calculation of ERGA and EREA, to a 
great extent, relies on the critical frequency of the transfer 
function of each loop, two ways which define the critical 
frequency will generate different control structure 
configurations. The new pairing method namely relative 
normalized gain array (RNGA) was proposed to provide a 
less calculating and optimal pairing decision in practical 
applications, which describes the effects of process 
information in a more intuitional and comprehensive way 
[8]. However, RNGA loop pairing criterion proposed was 
limited to multivariable systems under step reference input, 
which makes RNGA based control configuration only 
suitable for industrial processes under step inputs [9]. 
However, other set-point changes appear even more often 
than step changes in industrial practice. Therefore, it is 
important to put forward a general loop pairing technique 
available to multivariable systems for various reference 
inputs, in order to avoid adverse effects caused by abrupt 
step changes.  

Normalized RGA (RNGA) is the combination of the 
original RGA matrix and its selection rules. Using RNGA, it 
is possible to pair adaptively the inputs and outputs in a 
nonlinear and/or time variable process, where the optimal 
pairing may change from time to time [10]. The systematic 
approach to design decentralized controllers for MIMO 
processes containing time delay by extending the concept of 
relative normalized gain array (RNGA) through proper 
factorization of transfer function is proposed in this paper. 
RGA-Niederlinski index (NI)-RNGA criterion is proposed 
to determine the input/output paring which minimizes the 
cross loop interactions [11, 12]. By using the information 
conveyed in RNGA and RGA, an Equivalent Transfer 
Function (    ) is derived for each selected input-output 
pair when other loops are closed. These EQTFs have 
properly taken the loop interactions into account such that a 
given MIMO process can be perceived to be decomposed 
into a set of SISO processes with their transfer functions 
represented by EQTFs. Furthermore, the EQTFs are 
modified so that the control system integrity can be 
maintained. Finally, PI control is tuned for each loop based 
on the modified EQTFs. The proposed decentralized control 
design thus follows a systematic approach and is easy to be 
understood and implemented by field engineers [13].  
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The summarized RNGA rules are as follows: 
1. Try to select pairs with large RNGA; 
2. If the plant should be Decentralized Integral 

Controllable (DIC), avoid selecting with zero values 
RNGA; 

3. For DIC, selected pairs should satisfy Niederlinski 
condition. 

 
II. INPUT-OUTPUT PAIRING USING RNGA 

 
Consider an nxn system with a decentralized feedback 
control structure as shown in Fig. 1, 
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Fig. 1 Block diagram of decentralized control system 
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  are references, inputs and outputs 
respectively ;  ( )  [   ]    is system transfer function 
matrix and   ( )      *  ( )   ( )     ( )+ is the 
decentralized controller; i,j = 1,2,…n are integer indices. 
The loop pairing problem defines the control system 
structure, i.e., which of the available plant inputs are to be 
used to control each of the plant outputs. The most popular 
loop pairing method is the RGA and NI based pairing rules. 
The relative gain for the variable pairing       is defined 
as the ratio of two gains representing, first, the process gain 
in an isolated loop and, second, the apparent process gain in 
the same loop when all other loops are closed 

    

(
   

   
)
            

(
   

   
)
            

    , 
  -   

and RGA,  ( ), in matrix form is defined as in [6]. 
 ( )  {                }        

Furthermore, if all n loops are closed, the multi-loop system 
will be unstable for all possible values of controller 
parameters. If the NI is negative i.e., NI > 0, it provides a 
necessary stability condition and consequently, constitutes a 
complementary tool to the RGA in variable pairing 
selection. 
 

III. LOOP PAIRING FOR NORMAL PROCESSES 

 

Rewrite G( ) as G( )= k ⨂ ̅( ), where ⨂ denotes the 
element-by-element multiplication,    [   ]   ,: = G( ), 
and  ̅( )   [ ̅  ( )]   

with  ̅  ( )   . Assume that 
the  ̅  ( )     , is open-loop stable and its output  ̅  
  ̅  ( )   initially rests at zero. With    begin a unit step 
input, the average residence time (ART) is defined as 
                        |∫ ( ̅ ( )    ̅ ( )  )
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Let      0     1   
. The normalized gain matrix is defined 

as 
                                                                                (2) 
A special case is when     ̅  ( )         , then        .  
In calculating RNGA,        , with     is used.  
 
The RNGA provides reasonable information to indicate the 
interactions between the inputs and the outputs and is used 
in conjunction with RGA and NI to determine the input-
output pairing. The RGA and NI are used to eliminate any 
structurally unstable pairing  ( )  {        

        }         Given the transfer matrix  ( ), the 
RGA (denoted by  ) and NI are defined as follows 
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In the calculation of NI, the selected input-output pairs are 
recorded such that their transfer functions lie on the 
diagonal. The RGA-NI-RNGA criterion requires that the 
inputs and outputs are paired [11, 12] in such a way that: 
1. All paired RGA elements are positive; 
2. The NI is positive; 
3. The paired RNGA elements are closest to 1.0; 
4. The large RNGA elements are avoided.  
 
One of the main advantages of the above pairing rules is 
that the interaction evaluation depends on only the steady-
state gains. This information is easily obtained from simple 
identification experiments or steady-state design models. A 
potential weakness of these rules, however, is the same fact 
that they only use the stead-state gains which is based on the 
assumption of perfect loop control to determine loop 
pairing. 
 

IV. EQUIVALENT TRANSFER FUNCTION 
 

Almost all the industry processes are open-loop stable and 
exhibit non-oscillatory behavior for unit-step inputs, higher-
order transfer function elements can be simplified by either 
analytical or empirical methods to a first-order plus time 
delay model for interaction analysis and control system 
design [10]. Without loss of generality, assume all process 
transfer function elements, its output response in time 
domain to a unit step input can be described by 
                   ( )  

   

      
                                               (5) 

and            ( )  {
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                          (6) 

respectively, where    and  ̅ ( )  
  ( )

   
  are the steady state 

gain and the normalized open-loop process output, and 

              ̅ ( )  (   
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The average residence time of loop i-j is given by 
                                                                           (8) 
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In control system design, two parameters are most important 
in describing the dynamic properties of a transfer function, 
i.e., 
1. Steady state gain K: the steady state gain reflects the 

effect of the manipulated variable   to the controlled 
variable    

2. Average residence time      : the average residence 
time is accountable for the response speed of the 
controlled variable   to manipulated variable   . 

To measure the interaction effects, the normalized gain       
for a particular transfer function,    ( ) is given as, 
                  

   

     
 

   

       
 i, j=1,2,..                            (9)  

For the whole system, it can be written in a matrix form as, 
 

                 [
          
          

]                                        (10) 

Similar to RGA, the Normalized relative gain matrix can be 
defined between output variable   and input variable  ,   , 
as the ratio of two normalized gains 
                  

     

 ̂    
i, j=1,2,…                                         (11) 

where  ̂     is the normalized gain between output variable 
  and input variable    when all other loops are closed.  
The relative normalized gain array (RNGA) 

                [
          
          

]                                          (12) 

can be calculated by 
                  ⨂                                                       (13) 

where the operator ⨂ is the Hadamard product. 
 
The relative normalized gain reflects the combined changes 
in both steady state gain and dynamic when all other loops 
are open and when all other loops are closed. To separate 
the two changes, first the relative average residence 
time    should be defined as the ratio of loop    
   average residence time between when other loops are 
closed and when other are open, i.e., 
               

 ̂     

      
 i, j =1,2,…                                        (14) 

Using the definition of RNGA, the equations can be written 
as, 

          ̂         
         

     
 i, j=1,2,.                             (15) 

where      is the average residence time of loop i-j when 
other loops are closed. Equation (15) provides both gain and 
average residence time change information when all other 
loops are closed. To separate these two changes, the 
definition of RGA is used here, 
                   ̂   

   

   
 i, j=1,2,…                                      (16) 

When the relative average times are calculated for all the 
input/output combinations of the TITO process, it results in 
an array of the form, i.e., relative average residence time 
array (RARTA) which is defined as 
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where the operator   is the hadamard division. 
 
As the relative average time is the ratio of the average 
residence times between when other loops are closed and 
when other loops are open,  ̂     represent the dynamic 
changes of the transfer function    ( )when other loops 
closed. By the definition of RARTA, 
          ̂                                            (19) 
The average residence time of loop i-j th when other loops 
are closed is the open loop average residence time scaled by 
a factor   . In process control, steady state gain, time 
constant and time delay are the parameters that are of 
topmost interest for control system design. By using RGA 
and RARTA information, gain and phase changes of a 
transfer function element when other loops closed can be 
uniquely determined, i.e., a transfer function element of a 
MIMO process when other loops are closed can be 
approximated by a transfer function element having the 
same form as the open-loop transfer function element, but 
the steady state gain, time constant and time are scaled by 
 

   
and    , respectively, i.e., 

 ̂  ( )   ̂   
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      (20) 
 

V. DECENTRALIZED CONTROLLER DESIGN 

USING EQTF 
 

Since EQTF have incorporated the information of loop 
interactions, the MIMO process can be decomposed into a 
set of SISO processes then decentralized PID controllers 
can be designed to stabilize these SISO loops 
independently. In application, however, it is desirable that 
the MIMO system remains stable if any of the loops is taken 
in or out of service. This requires that the controllers be 
designed conservatively. Such motivates the use of 
modified EQTF which keeps the same form of the EQTF 
but has parameters taking the larger values of EQTF and its 
corresponding open-loop transfer function, 

               ̃  ( )  
 ̃   

  ̃   

( ̃     )
                                                (21) 

where  ̃  ( ) is the modified EQTF in which 
 ̃      {     ̃  }        ̃      {     ̃  }     ̃      {     ̃  }  (22) 
 
That the larger parameters usually imply the more 
challenging situations for control, which sequentially 
implies that the controller design, will be more conservative 
as compared to using the smaller parameters. As each 
controller design becomes a SISO case, any good PID 
tuning methods may apply. The simple internal model 
control (SIMC) tuning method is adopted for simplicity and 
robustness. The SIMC controller settings for the first-order 
with time delay process [14] is given as 

               ( )       

(     )
                                               (23) 
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VI. COUPLED TANK PROCESS 

 
Coupled tank is prominently used in petro-chemical 
industries, paper making industries as well as in water 
treatment industries for processing chemicals or mixing 
treatment. The control of level of fluid in tanks is a 
challenging problem due to interactions between the tanks 
and also serves as a MIMO process. The schematic diagram 
of coupled tank process is shown in Fig.2. The controlled 
variables are levels of tanks. The levels of the tanks are 
maintained by manipulating the inflows to the tanks.  
 

 
Fig. 2 Schematic diagram of coupled tank process 

 
The mass balance equation of the process is 
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The identified transfer function of coupled tank process [15] 
is  

 ( )   

[
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The Equivalent transfer function and the controller settings 
using Simplified Internal Model Control (SIMC) method 
[14] are obtained using the identified model and presented 
in Table I 
 

TABLE I SIMC SETTINGS 
  

 ̂  ( )       

 ̂  ( )  
                 

         
 0.1729 42.5316 

 ̂  ( )  
                 

         
 0.25819 82.6219 

 

 
Fig. 3 Closed loop response of coupled tank process for set point  

Change in tank 1 
 

 
Fig. 4 Closed loop response of coupled tank process for set point  

change in tank 2 
 

The decentralized controller designed is implemented 
through MATLAB software and the closed loop response 
for the coupled tank process for a set-point change in tank1 
from its operating value of 18.32cms to 25cms is shown in 
Fig.3. Similarly the closed loop servo response for set-point 
change in tank 2 to 17cms from its operating value of 
12.23cms and its controller output are shown in Fig.4.  
 

 
Fig. 5 Closed loop real time response of coupled tank process for  

Set point change in tank1 
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The closed loop real time response for coupled tank process 
for set point change in tank1 and tank 2 are depicted in 
Fig.5 and Fig.6 respectively. The controller performance is 
measured and evaluated which are shown in Table II. The 
stability of the system is checked by plotting the 
characteristic loci plot and shown in Fig.7. From the 
characteristic loci plot it is observed that the plot has not 
encircled the point -1+j0, so that the system is stable. 
 

 
Fig. 6 Closed loop real time response of coupled tank process for  

Set point change in tank 2 
 

 
Fig. 7 Characteristic loci plot  

 
TABLE II PERFORMANCE MEASURES  

 

Set point change 
Loop 1 Loop 2 

ISE IAE ISE IAE 

Tank 1 549.07 164.48 18.83 17.19 

Tank 2 10.10 48.32 357.77 225.87 
 

VII. CONCLUSION 

 
In this paper, loop pairing method is analyzed for 
interaction measurement of coupled tank MIMO system. In 
pairing method both the transient and steady state 
information of the process are considered to find the 

interactions between the loops.  Based on RGA-NI-RNGA 
criterion the pairing is achieved for coupled tank process 
then the Equivalent transfer function is derived for the 
selected input-output pairs using RNGA, thereby the MIMO 
process being decomposed into SISO process. Hence the 
decentralized controllers are designed independently for the 
coupled tank MIMO process as SISO process. The unique 
advantage of the proposed approach is its simplicity in 
carrying out a systematic decentralized control design, 
which is easier to be understood and implemented by field 
engineers. 
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