
Asian Journal of Electrical Sciences
ISSN: 2249-6297 (P) Vol.11 No.2, 2022, pp.24-29

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajes-2022.11.2.3545

Bug Tracker: A Comprehensive Bug Tracking and Modification System
K. Vasumathi1, S. Selvakani2 and P. Sridhar3

1Assistant Professor, 2Assistant Professor and Head, 3Research Scholar,
PG Department of Computer Science, Government Arts and Science College, Arakkonam, Chennai, Tamil Nadu, India

E-mail: kulirmail@gmail.com, sselvakani@hotmail.com, sridharbagaveli@gmail.com

Abstract - It is important that information provided in bug
reports is relevant and complete in order to help resolve bugs
quickly. However, often such information trickles to developers
after several iterations of communication between Developers
and reporters. Poorly designed bug tracking systems are partly
to blame for this exchange of information being stretched over
time. Our paper addresses the concerns of bug tracking systems
by proposing four broad directions for enhancements. As a
proof-of-concept, we also demonstrate a prototype interactive
bug tracking system that gathers relevant information from the
user and identifies files that need to be fixed to resolve the bug.
Keywords: Bug, Resolve, Developer, Reporter, Bug Tracking,
Exchanging Information, Fixed Bug

I. INTRODUCTION

The use of bug tracking systems as a tool to organize
maintenance activities is widespread. The systems serve as a
central repository for monitoring the progress of bug reports,
requesting additional information from reporters, and
discussing potential solutions for fixing the bug. Developers
use the information provided in bug reports to identify the
cause of the defect and narrow down plausible files that need
fixing. A survey conducted amongst developers from the
APACHE, ECLIPSE, and MOZILLA projects found out
which information items are considered useful to help resolve
bugs. Items such as stack traces, steps to reproduce, observed
and expected behaviour, test cases, and screenshots ranked
high on the list of preferred information by developers.

Previous research has shown that reporters often omit these
important items. Developers are then forced to actively solicit
information from reporters and, depending on their
responsiveness, this may stall development. The effect of this
delay is that bugs take longer to be fixed and more and more
unresolved bugs accumulate in the project’s bug tracking
system. We believe that one reason for this problem is that
current bug tracking systems are merely interfaces to
relational databases that store the reported bugs. They
provide little or no support to reporters to help them provide
the information that developers need.

As researchers, we often rely on repositories of software
project information as the main or only source of evidence to
extract the histories of bugs and other work items. They are
usually stored in the form of tickets or records in a bug
database. They provide a convenient compartmentalization
of work. We use project management systems’ features such

as audit trails and data fields that keep track of ownership and
of the context of each work item. Sometimes we enrich the
histories in ticketing systems with records of electronic
communication among team members, and with
organizational structure data extracted from human resources
databases. However, to this point the use of these electronic
repositories as reliable and sufficient accounts of the history
of bugs or work items has not been properly validated, and
we do not have a description of the common coordination
dynamics underlying bug histories. This paper reports on a
field study of coordination activities around bug fixing that
used a combination of case study research and a survey of
software professionals.

The study goes beyond the electronic repositories of software
activity by talking directly to the key actors on the bugs to
discover the patterns of group work that are commonly used
to fix bugs.

It discusses the reliability of electronic repositories as the
basis of research into the coordination of software projects
and provides some implications for the design of
coordination and awareness tools.

It is difficult to find and fix a software problem, and to verify
the solution, without the ability to reproduce it. As an
example, consider bug #30280 from the Eclipse bug database
(Figure 1). A user found a crash and supplied a back-trace,
but neither the developer nor the user could reproduce the
problem. Two days after the bug report, the developer finally
reproduced the problem; four minutes after reproducing the
problem, the developer fixed it.

Software maintenance, users inform developers via bug
reports which part of a software product needs corrective
maintenance. For large projects with many users the amount
of bug reports can be huge.

In open-source, bug tracking systems are an important part of
how teams (such as the ECLIPSE and MOZILLA teams)
interact with their user communities. As a consequence, users
are more involved in the bug fixing process they not only
submit the original bug reports but also participate in
discussions of how to fix bugs. Thus, they help to make
decisions about the future direction of a product. To a large
extent, bug tracking systems serve as the medium through
which developers and users interact and communicate.

24AJES Vol.11 No.2 July-December 2022

(Received 17 August 2022; Accepted 6 October 2022; Available online 12 October 2022)

However, friction arises when fixing bugs: developers get
annoyed and impatient over incomplete bug reports and users
are frustrated when their bugs are not immediately fixed.

II. REVIEW OF LITERATURE

Ralf Teusner, Christoph Matthies says that in any sufficiently
complex software system there are experts, having a deeper
understanding of parts of the system than others [7].
However, it is not always clear who these experts are and
which particular parts of the system they can provide help
with. Those a framework to elicit the expertise of developers
and recommend experts by analysing complexity measures
over time. Furthermore, teams can detect those parts of the
software for which currently no, or only few experts exist and
take preventive actions to keep the collective code
knowledge and ownership high. In this employed the
developed approach at a medium-sized company. The results
were evaluated with a survey, comparing the perceived and
the computed expertise of developers. This paper, show that
aggregated code metrics can be used to identify experts for
different software components. The identified experts were
rated as acceptable candidates by developers in over 90% of
all cases.

1. In this paper describes the idea of every programmer

being able to improve any code anywhere in the system.
2. The Analyzer framework enables analyses on the

expertise of developers for parts of
the system based on proven code complexity measures.

3. Those are following three code complexity
measurements were employed:

4. McCabe Complexity, Halstead Metrics, Coupling.
5. The Analyzer Framework these tools are extracted,

transformed into a common data model, and saved in a
typical Extract, Transform, Load (ETL) process,
allowing analyses on well-defined data structures.

6. In order to evaluate the results of Analyzer and compare
them to the expectations of the developers, a survey was
devised. Survey participants were developers who
volunteered. The survey consisted of two main parts:

7. Expert Selection Developers self-assessed whether they
were free to name two other qualified developers as well.

8. Proposal Evaluation Developers were presented with the
top three component experts identified by Analyzer and
were asked to rate the accuracy of each result.

Gina Venolia, Jorge Aranda says that every bug has a story
behind it [3]. The people that discover and resolve it need to
coordinate, to get information from documents, tools, or
other people, and to navigate through issues of
accountability, ownership, and organizational structure. This
paper reports on a field study of coordination activities
around bug fixing that used a combination of case study
research and a survey of software professionals. Results show
that the histories of even simple bugs are strongly dependent
on social, organizational, and technical knowledge that
cannot be solely extracted through automation of electronic
repositories, and that such automation provides incomplete

and often erroneous accounts of coordination. The paper uses
rich bug histories and survey results to identify common bug
fixing coordination patterns and to provide implications for
tool designers and researchers of coordination in software
development.

1. A list of primary and secondary actors in the history and

their contributions.
2. A list of relevant artifacts and tools.
3. A chronological list of the information flow and

coordination events in the bug’s history.
4. Pieces of evidence as required by the particularities of

each case.
5. The history of the bug as reconstructed by its record in

the bug database.

The history of the bug as reconstructed by the full collection
of electronic traces we obtained. The history of the bug as
reconstructed from making sense of all available evidence,
including our interviews with participants. During our
analysis we worked with several concepts that do not yet have
a consistent definition in the literature. In particular, one
could argue that our coordination patterns and goals are
subjective and have blurry boundaries - we never specified,
for instance, the difference between “rapid-fire” and
“infrequent” emails. Although this is a valid criticism, our
constructs are a first iteration given the data we collected.
Additional data and further iterations should refine these
constructs and add others that help convey the underlying
concepts more clearly.

Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann,
Sunghun Kim says that in a survey we found that most
developers have experienced duplicated bug reports,
however, only few considered them as a serious problem [4].
This contradicts popular wisdom that considers bug
duplicates as a serious problem for open-source projects. In
the survey, developers also pointed out that the additional
information provided by duplicates helps to resolve bugs
quicker. In this paper, therefore, propose to merge bug
duplicates, rather than treating them separately. To quantify
the amount of information that is added for developers and
show that automatic triaging can be improved as well. In
addition, in this paper discuss the different reasons why users
submit duplicate bug reports in the first place.

1. Often there are negative consequences for users who

enter duplicates. As a result, they might err on the side
of not entering a bug, even though it is not filed yet.

2. Triggers are more skilled in detecting duplicates than
users and they also know the system better. While a user
will need a considerable amount of time to browse
through similar bugs, triggers can often decide within
minutes whether a bug report is a duplicate.

3. Bug duplicates can provide valuable information that
helps diagnose the actual problem.

4. Provide a feature to merge bug reports, so that all
information is readily available to developers in one bug
report and not spread across many.

25 AJES Vol.11 No.2 July-December 2022

Bug Tracker: A Comprehensive Bug Tracking and Modification System

5. Check for resubmission of identical bug reports. These
duplicates are easy to catch and could be easily avoided
by the bug tracking system.

6. Allow users to renew long-living bug reports that are still
not fixed. Often the only way to remind developers of
these bugs is to resubmit them (and thus creating a
duplicate report).

7. Improve search for bug reports. Most users are willing to
spend some time to search for duplicates, but not a lot.
Here approaches for duplicate detection will be a
valuable addition to bug tracking systems.

D. Nicolas Bettenburg, Sascha Just, Adrian Schroter says that
the analysis of the 466 responses revealed an information
mismatch between what developers need and what users
supply [5]. Most developers consider steps to reproduce,
stack traces, and test cases as helpful, which are at the same
time most difficult to provide for users. Such insight is
helpful to design new bug tracking tools that guide users at
collecting and providing more helpful information. Our
CUEZILLA prototype is such a tool and measures the quality
of new bug reports; it also recommends which elements
should be added to improve the quality. Those trained
CUEZILLA on a sample of 289 bug reports, rated by
developers as part of the survey. In this paper, CUEZILLA
was able to predict the quality of 31–48% of bug reports
accurately.

1. Each examined projects’ bug database contains several

hundred developers that are assigned to bug reports.
2. Keeping the five-minute rule in mind, we asked

developers the following questions, which we grouped
into three parts:

3. Contents of bug reports, Problems with bug reports,
Contents of bug reports, Contents considered to be
relevant.

4. Our CUEZILLA tool measures quality of bug reports on
the basis of their contents. From the survey, we know the
most desired features in bug reports by developers.

5. Endowed with this knowledge, CUEZILLA first detects
the features listed below.

6. Terminations.
7. Keyword completeness.
8. Readability.
9. In addition to the description of the bug report, we

analyse the attachments that were submitted by the
reporter within 15 minutes after the creation of the bug
report.

10. Code Samples.
11. Stack Traces.
12. Patches.
13. Screenshots.

Peter Fritzson, Tibor Gyimothy, Mariam Kamkar, Nahid
Shahmehri says that this paper presents a version of
generalized algorithmic debugging integrated with the
category partition method for functional testing [6]. In this
way the efficiency of the algorithmic debugging method for
semi-automatic bug localization can be improved by using

test specifications and test results. The long-range goal of this
work is a semi-automatic debugging and testing system
which can be used during large-scale program development
of non-trivial programs. The method is generally applicable
to procedural languages and is not dependent on any ad hoc
assumptions regarding the subject program. The original
form of algorithmic debugging is however limited to small
programs without side-effects.

Another drawback of the original method is the large number
of interactions with the user during bug localization. To our
knowledge, this is the first method which uses category
partition testing to improve the bug localization properties of
algorithmic debugging. The method can avoid irrelevant
questions to the programmer by categorizing input
parameters, and match these against test cases in the test
database. The algorithmic debugger traverses the execution
tree and interacts with the user by asking about the expected
behaviour of each procedure.

1. The user has the possibility to answer yes or no or to give

an assertion about the intended behaviour of the
procedure.

2. The search finally ends, and a bug is localized in a
procedure p when one of the following holds:

3. Procedure p contains no procedure calls.
4. All procedure calls performed from the body of

procedure p fulfil the user’s expectations.

We divide our algorithmic debugging methodology into three
major phases.

1. Transformation phase,
2. Tracing phase
3. Debugging phase.
4. The last phase consists of the three major components:

pure algorithmic debugging, test case lookup and
partitioning, and program slicing.

5. A prototype generalized algorithmic debugger for
Pascal, and a test case generator for real size application
programs in Pascal, C, dBase and LOTUS have been
implemented.

Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken,
Michael I. Jordan says that in this way, present a statistical
debugging algorithm that isolates bugs in programs
containing multiple undiagnosed bugs [2]. Earlier statistical
algorithms that focus solely on identifying predictors that
correlate with program failure perform poorly when there are
multiple bugs.

Our new technique separates the effects of different bugs and
identifies predictors that are associated with individual bugs.
These predictors reveal both the circumstances under which
bugs occur as well as the frequencies of failure modes,
making it easier to prioritize debugging efforts. Our
algorithm is validated using several case studies, including
examples in which the algorithm identified previously
unknown, significant crashing bugs in widely used systems.

26AJES Vol.11 No.2 July-December 2022

K. Vasumathi, S. Selvakani and P. Sridhar

1. This survey, briefly report here on experiments with
additional applications containing both known and
unknown bugs. Complete analysis results for all
experiments.

2. We analysed CCRYPT 1.2, which has a known input
validation bug. Our algorithm reports two predictors,
both of which point directly to the single bug.

3. For large applications the set P numbers in the hundreds
of thousands of predicates, many of which are, or are
very nearly, logically redundant.

4. A separate difficulty is the prevalence of predicates
predicting multiple bugs.

5. Finally, different bugs occur at rates that differ by orders
of magnitude. In reality, we do not know which failure
is caused by which bug, so we are forced to lump all the
bugs together and try to learn a binary classifier.

6. In this section we present the results of applying the
algorithm described in Section 3 in five case studies.
Statistics for each of the experiments. In each study we
ran the programs on about 32,000 random inputs.

7. In this section we present the results of applying the
algorithm described in Section 3 in five case studies. In
each study we ran the programs on about 32,000 random
inputs.

8. RHYTHMBOX 0.6.5, an interactive, graphical, open
source music player.

9. RHYTHMBOX is a complex, multi-threaded, event-
driven system, written using a library providing object-
oriented primitives in C. Event-driven systems use event
queues; each event performs some computation and
possibly adds more events to some queues.

The Daikon project monitors instrumented applications to
discover likely program invariants. It collects extensive trace
information at run time and mines traces offline to accept or
reject any of a wide variety of hypothesized candidate
predicates.

Amy J. Ko and Brad A. Myers [1] says that in this section,
software developers want to understand the reason for a
program’s behaviour, they must translate their questions
about the behaviour into a series of questions about code,
speculating about the causes in the process.

The Whyline is a new kind of debugging tool that avoids such
speculation by instead enabling developers to select a
question about program output from a set of why did and why
didn’t questions derived from the program’s code and
execution.

The tool then finds one or more possible explanations for the
output in question, using a combination of static and dynamic
slicing, precise call graphs, and new algorithms for
determining potential sources of values and explanations for
why a line of code was not reached. Evaluations of the tool
on one task showed that novice programmers with the Why
line were twice as fast as expert programmers without it. The
tool has the potential to simplify debugging in many software
development contexts. In this paper, we present a new kind

of program understanding and debugging tool called a
Whyline.

This work follows earlier prototypes. The Alice Whyline,
supported a similar interaction technique, but for an
extremely simple language with little need for procedures
and a rigid definition of output.
1. These successes inspired us to extend these ideas to an

implementation for Java, which removes many of the
limitations of our earlier work.

2. In this way, present empirical evaluations of the
technique, one of which found that novice programmers
with the Whyline were nearly twice as fast as experts
without it.

In a user study of this task, which we report on at the end of
this paper, people using the Whyline took half the time that it
took for participants to debug the problem with traditional
techniques.

This was because participants did not have to guess a search
term or speculate about the relevance of various matches of
their search term, nor did they have to set any breakpoints.
One notable approach is Cleve and Zeller’s Delta Debugging,
which, given a specification of success and failure, and
successful and failing program inputs, can empirically
deduce a small chain of failure-inducing events.

III. PROPOSED METHODOLOGY

In the Existing system the bugs are not properly maintained
and they are simply relied on shared lists and email to
monitor the bugs. In this type of system, it becomes difficult
to track a bug. If a bug is overlooked then it may cause
tremendous errors in the next phase. This also will improve
the cost of project and whatever necessary effort spent on the
bug maintenance may not be worthy. And there is no efficient
search technique. One has to search the whole database for
the details of particular bug which might have occurred
sometime earlier. It is both time consuming and error prone.

A. Bug Tracking and Modification System

Bug Tracking and Modification System shows the data flow
diagram developer between testers as shown in Figure 1.

Fig. 1 Bug Tracking and Modification System

27 AJES Vol.11 No.2 July-December 2022

Bug Tracker: A Comprehensive Bug Tracking and Modification System

B. Experimental Results

Fig. 2 Login

This is a Bug Tracking system. The user enter the correct
username and password goes to the Next step, otherwise
username and password error on this page.

Fig. 3 Admin

After, Login your system Admin can control the overall your
project. For example, add developer, add admin, add tester,
etc.,

Fig. 4 Split Work

Admin can add a task, add a user. Admin can easy track the
status on a within a second.

C. File Design

This system contains the menus for various kinds of
operations. Menus and Files are created for displaying the
information about Bug Tracking and Modification System.
This system also contains the command buttons as part of the
user interface. Menu driven programming is very easy to
access the programs. In such a way the system is developed.

This system contains the following menus:
1. Create projects.
2. Configure projects.
3. Assign task.
4. View projects.
5. About.
6. Exit

D. Input Design

Input design is a process of converting a user-oriented
description of the input to the computer-based system. This
design is important to avoid errors in the input process and
show the correct direction to the management for getting the
correct information from the computerized system. Input
design must be in such a way that it must control the amount
of input, avoid delay, etc. It must be simple. The input design
must ensure user-friendly screen, with simplicity, providing
ease of viewing & entering the data. Every input data is
validating. If the data is not valid, proper error message are
displayed. The main objective of designing input focus on
1. Controlling the amount of input required.
2. Avoiding delayed response.
3. Controlling errors.
4. Keeping process simple.
5. Avoiding error.

E. Output Design

Computer output is the most important and direct source of
information to the user. Efficient, intelligible output design
should improve the systems relationship with the user and
help in decision making. General characteristic of the output
forms is as follows.

1. Each output is given a specific name or title.
2. State whether each output field is to include significant

zeros, spaces between fields and alphabetic or any other
data.

3. Provide a sample of the output including areas where
printing may appear and the location of each field.

The output information is also displayed on the screen. The
layout sheet for displayed output is similar to the layout chart
for designing input. The major reports that are produced
using the Systematic Granite Exports Transaction System
are,
1. Bug status report.
2. User reports.
3. Project details report.

28AJES Vol.11 No.2 July-December 2022

K. Vasumathi, S. Selvakani and P. Sridhar

F. Database Design

Database design is the process of producing a detailed data
model of a database. This logical data model contains all the
needed logical and physical design choices and physical
storage parameters needed to generate a design in a Data
Definition Language, which can then be used to create a
database. A fully attributed data model contains detailed
attributes for each entity. The term database design can be
used to describe many different parts of the design of an
overall database system. Principally, and most correctly, it
can be thought of as the logical design of the base data
structures used to store the data. In the relational model these
are the tables and views. In an object database the entities and
relationships map directly to object classes and named
relationships Usually, the designer must,

1. Determine the relationships between the different data

elements.
2. Superimpose a logical structure upon the data on the

basis of these relationship.

IV. CONCLUSION

All the objectives of this project are satisfied. The
intermediate reports can be used for verification, if necessary,
in future. The system has been tested with sample data, with
original data and the system is found to run well. The concern
in which the proposed system will be implemented will find
it more efficient. The atmosphere has been made more
efficient and interactive. The functioning of the system can

be further enhanced in a number of ways, though an attempt
has been made for security and high reliability. The newly
developed system had simplified the operation for bug
tracking. It is portable and flexible for further enhancement.

REFERENCES

[1] A. J. Ko and B. A. Myers, “Debugging reinvented: asking and
answering why and why not questions about program behaviour,” In
ICSE’08: Proceedings of the International Conference on Software
Engineering, pp. 301-310, 2008.

[2] B. Liblit, M. Naik, A. X. Zheng, A. Aiken and M. I. Jordan, “Scalable
statistical bug isolation,” In PLDI’05: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pp. 15-26, 2005.

[3] G. Venolia and J. Aranda, “The secret life of bugs: Going past the
errors and omissions in software repositories,” In ICSE’09:
Proceedings of the 31st International Conference on Software
Engineering (to appear), 2009.

[4] N. Bettenburg, R. Premraj, T. Zimmermann and S. Kim, “Duplicate
bug reports considered harmful… really?,” In ICSM’08: Proceedings
of the 24th IEEE International Conference on Software Maintenance,
pp. 337-345, 2008.

[5] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj and T.
Zimmermann, “What makes a good bug report?,” In FSE’08:
Proceedings of the 16th International Symposium on Foundations of
Software Engineering, pp. 308-318, November 2008.

[6] P. Fritzson, T. Gyimothy, M. Kamkar and N. Shahmehri, “Generalized
algorithmic debugging and testing,” In PLDI’91: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 317-326, 1991.

[7] Ralf Teusner and Christoph Matthies, “Who should fix this bug?,” In
ICSE’06: Proceedings of the 28th International Conference on
Software engineering, pp. 361-370, 2006.

29 AJES Vol.11 No.2 July-December 2022

Bug Tracker: A Comprehensive Bug Tracking and Modification System

