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Abstract - Researchers have proposed that the ability to pay 
attention to teachers’ instruction is a prerequisite for learning. 
However, meaningful learning is often challenged by the 
presence of rule-breaking behaviors. In this study, we argue 
that although students exhibit different attention-related 
behaviors in all instructional settings, some behaviors are 
unique to a typical classroom. It is still unclear what factors 
uniquely determine students’ attention-related behaviors in 
animated programming environments because of the paucity 
of research evidence in this area. This study investigates 
students’ attention-related behaviors during animated 
programming instruction, including attentional growth 
trajectory, the nature of differences in attention-related 
behaviors, and predictors of these behaviors. Our analysis 
involved 8 classroom videos that collected the programming 
activities of 30 university students in our previous study. The 
video files were annotated on a one-dimensional, continuous 
scale, yielding 1,920 timestamped data points. The data on 
attentional trajectories and differences in attention-related 
behaviors were analyzed using latent and multi-level growth 
modeling, respectively, while data focusing on the predictors of 
attentional processes were analyzed using the Random Forest 
machine learning algorithm. We found that students’ 
attentional growth trajectory is linear and accelerates toward 
on-task events. However, these behaviors vary within and 
between students, leading to differences in attention-related 
behaviors. The results also revealed that individual and 
instructional characteristics predict the differences in 
attention-related behaviors. The findings highlight the 
importance of structured topics, safe classroom environments, 
quality instructional support, and interactive multimedia 
objects that activate students’ memory, eliminate task 
difficulty, and reduce the amount of mental resources required 
for meaningful learning. 
Keywords: Attention-Related Behaviors, Within-and Between-
Person Variability, Students, Animation, Programming 

I. INTRODUCTION

A. Preamble

Why do students exhibit different attention-related 
behaviors during instruction? This question was raised in a 
recent study that found that “a substantial degree of the 
differences between students in their attention-related 
behavior can be explained by class membership” [1]. The 
authors further argue that lesson contents cannot be decisive 
in predicting students’ attention-related behavior based on 

the assumption that all classroom videos in their study 
presented introductory lessons to new topics. While we 
uphold this position, we equally acknowledge the position 
of previous studies which argued that factors that are unique 
to individual classrooms overly determine differences in 
students’ attention-related behaviors [2]. More compelling 
evidence indicates that intense and interactive lessons 
activate mental structures that permit students to allocate 
attentional resources toward the learning experience [3]. As 
many interactive teaching tools continue to emerge due to 
advancements in technology, lesson contents laden with 
visuals and simulations have become important drivers of 
students’ attention in the classroom [3, 4]. Notwithstanding 
these arguments, Goldberg’s [1] study remained the sole 
motivating factor in our quest for further investigations 
across a broad spectrum of classroom attention and 
engagement.  

During the course of our investigation, we [5] first 
conducted a study that classified student attention-related 
behaviors using machine learning algorithms that disclosed 
important learning profiles. We were able to find three 
representative sequences that explain students’ profiles 
when they were exposed to block-based programming 
activities as a supplement to their formal programming 
teaching. Specifically, we found three clusters of students; 
the active students (73% of the participants who frequently 
watch the animation, take notes, sit upright, and do not 
engage in classroom disruptions), the passive students (81% 
of the participants who watch the animation, sit forward, but 
did not take notes), and the “to-passive” learners (a small 
proportion of students who were unconnected with the 
lesson but frequently transition to the passive state). 

Our second study [6] investigates students’ interaction 
patterns during block-based programming activities. Our 
findings indicate the presence of four classroom 
interactions, including a large proportion of students who 
engage in learner-learner (36.95%) and learner-content 
interaction (34.54%), and a small proportion who engage in 
learner-distractor (16.87%) and learner-teacher interaction 
(11.65%). Across the two studies, we acknowledged the 
potential of instructional quality to capture and sustain 
students’ attention but were concerned about the presence of 
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passive listeners and reluctant learners who remained 
unconnected with the learning experience despite the 
visually appealing nature of the animation and block-based 
programming environments. In the course of searching for 
ultimate reasons that explain these differences, we bumped 
into a prior study that emphasized the certainty of different 
attention-related behaviors among students regardless of 
internal and external factors [7]. However, we remained 
adamant that actions attract reactions. 

Although students exhibit different attention-related 
behaviors in all instructional settings, we argued that some 
behaviors are unique to a typical classroom due to 
differences in instructional settings. Therefore, it is 
important to investigate classroom dynamics in a specific 
classroom setting and uncover classroom-specific behaviors 
along with their predictors. For example, while animations 
have been reported to capture and sustain students’ attention 
across a wide range of disciplines, their attentional effects 
are not always consistent [3]. To the best of our knowledge, 
it is still not quite clear what factors uniquely determine 
students’ attention-related behaviors in animated 
programming environments because of the paucity of 
research evidence in this area. While we generally 
acknowledge the importance of class membership in 
determining attention-related behaviors as proposed by 
Goldberg and colleagues [1], we strongly oppose their 
proposal concerning the insignificant importance of 
individual characteristics and lesson contents. We, 
therefore, seek to contribute to the ongoing refinement of 
the attention and engagement literature, while providing 
more evidence of multiple factors that could predict 
differences in attention-related behavior, using animated 
programming classroom as a reference point. 

B. Theoretical Explanation of Classroom Attention

Across the literature, students’ attention is explained from 
the lens of three theoretical models that form the basis of 
research examining students’ attention and engagement. The 
cognitive psychology model proposed that attention is a 
filtering mechanism that establishes the relationship 
between an individual’s interest and memory activation [8, 
9]. This theory further explains that attention facilitates the 
amount of information that goes into the working memory 
and helps learners to decide on the right activity they feel is 
suitable for their learning. Ultimately, the fundamental 
assumption of the cognitive psychology model is that 
attention is a positive learning behavior that determines 
knowledge construction and information processing. 

From the lens of the engagement model [10], attention is 
crucial to learners’ investment in learning because it signals 
certain learning-related processes that should be salient to 
students’ learning. Consistent with this perspective, 
Goldberg et al., [11] proposed that attention serves as a 
selection criterion for all instructional activities because it 
determines the suitable instructional activity to engage in, 
and the pieces of information to process. The instructional 

quality model [12, 13] postulates that attention provides 
information about the quality of instruction and signals to 
the teacher the need to provide additional instructional 
support. From the foregoing perspectives, we define 
attention as a cognitive and behavioral event that influences 
memory activation, determines the right activity to engage 
in, and provides information about the quality of an 
instructional strategy.  

C. Student Attention-Related Behaviors during Classroom
Instruction

Researchers have proposed that the ability to pay attention 
to teachers’ instruction is a prerequisite to learning [14, 15]. 
Plenty of research has also proven that attention exhibits the 
potential for information processing and memory activation 
[16, 17]. Because learning behaviors are often elusive and 
difficult to measure, observable attentional cues have been 
introduced into many research studies, including those 
conducted in computer vision, contemporary video coding, 
and self-reports. A typical classroom consists of different 
attention-related behaviors that characterize teaching quality 
and the nature of instructional intervention [18]. More often, 
these behaviors are contrary to the ideal behavioral events 
expected to occur in the classroom because students divert 
their attention from classroom activities [19]. 

Attention-related behaviors occur along two opposite 
spectrums, ranging from positive (on-task) to negative (off-
task). On the positive end, behaviors such as sharing ideas 
with peers and the whole class, asking questions, raising 
hands, taking notes, and fixating eyes on the teacher or 
content are prevalent. Studies have proposed that these 
behaviors improve students’ learning as evidenced by high 
grades [18]. Conversely, the negative pole consists of rule-
breaking episodes including off-point discussions with 
peers, yelling out, impulsivity, unauthorized random 
walking, playing with objects, and sleeping. Although some 
of these behaviors do not distract the class (e.g., sleeping), 
they are generally classified are non-compliant events in 
response to teachers’ requests [20]. In their earlier study, 
Floress et al., [21] maintained that these events often result 
in different externalizing and rule-breaking episodes that 
disrupt the harmonious flow of classroom interaction. 

Concerns have shifted from the importance of positive 
classroom behaviors to the negative effects of rule-breaking 
episodes because the latter often force students to exhibit 
different attention-related behaviors that result in a less 
elaborate and more superficial understanding [1, 21]. These 
rule-breaking episodes are often associated with a number 
of health- and academic-related outcomes, including 
teachers’ burnout [22], greater stress levels [23], and 
perceived job dissatisfaction [24]. On the side of the 
students, such episodes are associated with reduced 
academic performance as evidenced by low grades and 
graduation rates [25]. Notwithstanding the associated 
negative effects, different rule-breaking episodes continued 
to be exhibited by. 
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D. Factors Predicting Students’ Attention-Related
Behaviors

Factors predicting students’ attention-related behaviors are 
numerous. Notable among these factors include students’ 
cognitive characteristics [26], classroom management 
strategies [19], instructional quality [27], class membership 
[1], and instructional environment [28]. These factors are 
not exclusive because they tend to differ from one 
classroom to another. The factors are also not exhaustive 
due to the continuous emergence of classroom culture. 
Factors affecting attention-related behaviors are better 
explained by attribution theory which postulates that the 
occurrence of behavior is attributed to dispositional and 
situational variables [29]. In situational attribution, causality 
is attributed to external factors that are beyond the control 
of an individual. This may include the nature of the 
instructional environment, the type of content presented, the 
materials and strategies used in the presentation, and the 
overall classroom culture. In dispositional attribution, 
causality is attributed to internal factors that can be 
controlled by one’s behavioral predisposition. Typical 
examples include cognitive factors such as intelligence, 
affective factors such as attitude and self-efficacy, and 
psychomotor variables such as motor skills in performing a 
task. 

The assumptions of the attribution theory can be applied in 
all classroom settings, including multimedia environments 
that involve animations, games, simulations, augmented and 
virtual realities, and robotics. Although research in these 
areas is still emerging, peculiar factors include students’ 
cognitive load, spatial ability, and proficiency levels. For 
example, in their review, Yusuf and Noor [3] emphasized 
the importance of cognitive load and spatial ability in 
determining learners’ attention and engagement when 
learning with animations.  

Within the domain of cognitive load, research has shown 
that some students struggle to comprehend information 
presented in multimedia environments because several 
visual objects often load their memory [30]. The resultant 
effect is their demonstration of different attention-related 
behavior during instruction. The cognitive load effect can be 
understood from the positions of cognitive load theory [31] 
which suggests that several visual components of 
multimedia environments may impose extraneous cognitive 
load due to the temporal limits of the working memory, and 
such effect is detrimental to students’ attention and overall 
learning. 

Researchers have proposed spatial ability as an alternate 
cognitive competence to reduce the cognitive load effect 
and, therefore, encouraged multimedia educators to improve 
students’ spatial ability through various interventions. 
However, this comes with a cost as differences in spatial 
abilities could also cause students to exhibit different 
attention-related behaviors. This position has been 
extensively explained by the ability-as-compensator 

hypothesis [32, 33] and the enhancer hypothesis [32, 34]. 
The fundamental principle of the ability-as-compensator 
hypothesis is that multimedia environments are more 
beneficial to students with low spatial ability because 
interactive visual objects reduce the mental efforts required 
to work with dynamic illustrations [33]. Conversely, 
multimedia environments are not beneficial to high spatial-
ability learners because they are already equipped with high 
cognitive functions required to generate a substantial 
amount of cognitive representations [35]. The enhancer 
hypothesis opposed this view by claiming that multimedia 
representations are beneficial to high spatial ability learners. 
A recent study has confirmed the validity of the enhancer 
hypothesis by indicating that 3D multimedia environments 
enhance the visual attention of high-spatial ability learners 
[35]. 

Besides cognitive load and spatial ability, learners’ prior 
knowledge and knowledge proficiency level (collectively 
conceived as experience in some research) have been added 
to individual characteristics influencing different attention-
related behaviors. In the context of multimedia 
environments, the effect of prior knowledge and knowledge 
proficiency is explained by the ‘expertise reversal’ effect 
[36]. This effect occurs when the changes in learners’ 
expertise are reversed by the relative pedagogical 
effectiveness of instructional conditions. It should be noted 
in this research that the term ‘expertise’ is conceived as a 
narrow, task-specific proficiency rather than genuine high-
level professional expertise. The basic assumption of the 
expertise reversal effect is that instructional environment 
developed as additional support to novice learners could be 
counterproductive to expert or more experienced learners 
because of their familiarity with the specific contents 
presented in the environment. On this basis, differences in 
expertise could also cause different attention-related 
behaviors among students.  

E. Indicators of Students’ Attention

Measuring students’ attention during classroom instruction 
has been a rigorous practice even with the advancement of 
computer vision. Studies have employed several indicators 
to measure students’ attention. In previous years, these 
indicators were collected using self-reports and observer 
ratings, but with the advancement of technology, more 
sophisticated tracking tools have been developed. Although 
recent tracking tools and deep learning algorithms have 
proved to be effective, observer ratings are still used in 
recent research due to the diverging nature of attention 
indicators that were beyond the power of computing. 
Several studies have measured students’ attention using eye-
gaze patterns as a useful indicator [37, 38]. The motivation 
for using eye-gaze indicators was precipitated from the 
assumption that they provide accurate information about 
learners’ ability to suppress or engage in visual and auditory 
distractions. To support this assumption, Hachad et al., [16] 
maintained that an individual’s eye gaze is significantly 
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associated with the “amount of neural processing power 
they are devoting to a particular task” (p.7361). 

The use of eye-gaze data has been marred by many 
limitations. Eye-gaze estimation is only useful when the 
eyes can be detected. However, several factors have been 
found to prevent eye-gaze estimation, including the 
presence of occlusive, low-resolution, and blurred images 
[39]. Other factors include the high brightness of images 
due to lightning. Against these limitations, researchers have 
combined eye-gaze and head pose data in the assessment of 
attention-related behaviors. An important assumption is that 
attention-related behaviors are accurately observed using 
head direction because people tend to align their heads in 
the direction of visual stimuli after running their gaze [37]. 
Compelling evidence shows that head orientations account 
for about 68.9% of the overall gaze direction and achieved 
88.7% accuracy in identifying participants’ visual attention. 

Although eye gaze and head pose have been recognized as 
important indicators of attention, they are not sufficient for 
measuring different attention-related behaviors due to the 
presence of diversity in the classroom. Boheim et al., [4, 18] 
argued that engaging in hand-raising can also be regarded as 
an additional indicator of students’ attention regardless of 
whether they are given the opportunity to speak. Their study 
indicates that hand-raising is significantly correlated with 
cognitive engagement during classroom instruction. A 
summary of the attention indicators extracted from the 
literature can be found in the Supporting Information (Table 
I). 

F. The Present Study

Existing studies have employed statistical models to explain 
students’ attention-related behaviors, including within- and 
between-student variability in attentional processes [1, 4, 
18]. However, these studies failed to sufficiently explain the 
influence of each predictor variable but relied on regression 
estimates that only show probabilities of the causal 
relationships. In this study, we employed interpretable 
machine learning algorithms to explain how different 
attention-related behaviors among students change with 
regard to different values of the predictor variables. We 
employed continuous rating of video data as opposed to 
categorical coding used in previous studies [40]. Goldberg 
et al., [1] argued that categorical coding “do not account for 
the entire behavioral spectrum that students can exhibit 
during instruction (p. 2). 

Our data were collected from 8 video files, each lasting an 
average of 20 minutes of instructional time. The video files 
were collected during our prior research with programming 
students in the summer of 2022. The video files had already 
been edited to exclude classroom preparatory procedures 
and stored in a departmental repository. While we 
acknowledge the power of technology to automatically 
detect and rate visual attention through computer vision and 
annotation software, we employed a manual rating approach 

to adequately detect different attention-related behaviors 
regardless of its time-consuming nature. In this case, we 
created screenshots of each video file on an interval of 5 
seconds and then annotate the screenshots using a 
continuous rating scale. Using the collected data, we first 
addressed the participants’ growth trajectories in their 
attentional processes and uncovered their within- and 
between-person variability across different time points. 
Secondly, we predicted the occurrence of different 
attention-related behaviors using variables related to 
individual and instructional characteristics. The following 
research questions, therefore, were addressed: 

1. What is the growth trajectory of students’ attention-
related behaviors across different time?

2. What is the students’ within- and between-person
variability in their attention-related behaviors across
different time?

3. Do individual (gender, cognitive load, spatial ability,
programming proficiency, programming proficiency,
programming attitude) and instructional characteristics
(perceived instructional quality, teaching topic,
classroom activities) predict students’ attention-related
behavior?

II. METHODS

A. Participants and Procedure

This study is an extension of our previous research that 
exposed students to animation and block-based 
programming activities at a research university. Therefore, 
the present study was based on the video data that was 
collected during the studies. In the previous studies, we 
collected videos of thirty-five- and second-year level 
students’ programming activities (Mean age: 19.8. Male = 
23, Female = 12). The participants were observed across 
eight weeks with a total of eight video files. During the 
programming instruction, all participants watched a 20-
minute animated video (Fig.1) and participated in some 
programming tasks that supplement their learning. All 
classroom instruction was recorded using a high-resolution 
and wide-angle camera to enhance video quality. Informed 
consent was obtained from the students concerning the use 
of their video data in this research. The study was approved 
by the institutional review board. 

In addition to the video data, some participants’ individual 
(gender, cognitive load, spatial ability, prior knowledge, 
programming proficiency, programming attitude) and 
instructional characteristics (perceived instructional quality) 
were collected in our previous study, providing an ideal 
base for the conduct of this research. Inventories used for 
collecting data on individual and instructional 
characteristics include cognitive load test [41, 42], paper 
folding test [43], revised programming attitude scale [44], 
departmental programming proficiency test, perceived 
instructional quality scale [13], and a baseline demographic 
survey that collects the participants’ prior knowledge of 
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programming along with their gender category. It should be 
noted that data on teaching topics and classroom activities 
were generated from post-analysis of the video files. 

Fig. 1 Screenshot of the animated instruction 

Each participant was assigned a unique identification, which 
was used in their reidentification during data entry. We 
excluded the data of two students beforehand because their 
demographic data was incomplete. We further excluded the 
data of three students because they did not return their 
consent forms. Overall, we analyzed eight video files 
consisting of 30 participants. The measurement indicators 
can be found in the Supporting Information (Table II). 

B. Annotation of Attention-Related Behaviors

We took screenshots of the video files at an interval of 5 
seconds and then manually annotated the screenshots on a 
one-dimensional, continuous rating scale. We modified the 
continuous rating scale proposed by Goldberg et al., [1] to 
suit the purpose of the study. In our previous studies, we 
proposed time interval ratings of 5 minutes as a sufficient 
approach in synchronizing the concurrent recording of 
separate streams of behaviors. The annotation took into 
consideration the broad spectrum of different attention-
related behaviors of the students within the ICAP 
framework [45]. The screenshots were annotated on a 
symmetric scale ranging from 1, indicating extremely off-
task, to 10, indicating extremely on-task (see Fig.2). Values 
closer to 5 are rather passive behaviors in which the 
participants lean their heads on their hands, sit backward or 
sideways while watching the animation (on-task) or shift 
their gaze away from the animated instruction (off-task). In 
total, we annotated 1920 screenshots (12 per minute x 20 
minutes x 8 videos, see sample in Fig.3). 

C. Analysis of Teaching Topics and Classroom Activities

From the video files, we did not provide information on 
teaching topics and classroom activities in our previous 
studies because they are time-variant variables. For 
example, we narrated a wide variety of sub-topics via the 

animation throughout each instructional period. In addition, 
we engaged the students in different classroom activities 
during each instruction to reinforce their learning. Before 
the analysis of teaching topics and classroom activities, we 
first transcribed the audio content of the video files into text 
with Google Cloud, an automatic speech recognition engine. 
The transcribed data appeared as a sequential text stream 
with relevant timestamps. We then sent the transcribed data 
and the video files to two computer science educators. From 
the transcribed data, the teaching topics were generated and 
categorized into main themes (see Table II in Supporting 
Information). The classroom activities on the other hand 
were annotated from the raw video files on a three-point 
continuous scale, ranging from 1 = expository to 3 = hands-
on. Values closer to 2 are more or less interactive activities 
where students were engaged in question-and-answer 
sessions or other collaborative activities. Data concerning 
teaching topics and classroom activities were generated and 
entered in steps of five seconds to match the annotation of 
the attention indicators.  

III. ANALYSIS

We estimated the participants’ growth trajectories of 
attentional processes (RQ1) using latent growth modeling 
(LGM) with lavaan R package and examined their within- 
and between-person variability (RQ2) using multilevel 
growth model (MGM) with nlme R package. The LGM is a 
continued version of Structural Equation Modeling (SEM) 
applied in the analysis of growth trajectory that occurred 
over time [46].  Like SEM, it applies the same criteria for 
determining how well the model fits the data. The MGM is 
also a growth curve modeling technique but permits the 
estimation of inter-individual differences and intra-
individual change over time by modeling their variances. 

For the LGM, two major models have been proposed, 
including linear and quadratic models. Fig.4 represents the 
linear model while Fig.5 represents the quadratic model. 
Among the two models, a factor loading of 1 was assigned 
to the intercept (i.e., ICEPT). This represents the 
hypothesized attention-related behaviors when the growth 
curve begins. The factor loadings for the slope (0, 1, 2, 3, 4, 
5, 6, and 7) assumed that the growth pattern is linear and 
that variations in attention-related behaviors have a 
proportional effect that either accelerates or decelerates. On 
the other hand, factor loadings for the quadratic latent factor 
(0, 1, 4, 9, 16, 25, 36, and 49) assumed that attention-related 
behaviors occur in a U shape. In order to choose a robust 
model between the linear and quadratic model, four 
indicators were employed as baseline comparisons to test 
for the model fit: Akaike information criterion (AIC), 
Bayesian information criterion (BIC), chi-square test; 
Tucker-Lewis Index (TLI); Comparative Fit Index (CFI); 
and root-mean-squared error of approximation (RMSEA). 
As a rule of thumb, a model is considered to be fit if: AIC 
and BIC values are lower; chi-square (p-value) > 0.05; TLI 
> 0.85; CFI > 0.9; RMSEA < 0.05).For the MGM, two
models have also been proposed, including the fixed and
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random effect models. The fixed effect assumed that the 
variation in attention-related behaviors across time is 
constant within- and between-persons while the random 
effects assumed that such variations occur at random. 

To analyze the predictors of attention-related behaviors 
(RQ3), we fitted our data in five supervised machine 
learning (ML). These include linear regression, random 
forest, elastic net regularized regression, support vector 

machine, and Naïve Bayes. Among the ML models, random 
forest (RF) fared better, based on several performance 
metrics (see Table I), and was then used as the robust 
algorithm. To avoid overfitting and improve the efficiency 
of the RF model, we split the data into 10 folds and then 
performed a 10-fold cross-validation using 9-folds as the 
training set, and the remaining subset (k-1) as the test set. 
This method improved the accuracy of the RF model by 
3.2%, yielding 97.3% accuracy.  

Fig. 2 Template for behavioral annotation, Adapted from Goldberg et al., [1] 

Fig. 3 Sample of annotations of video screenshots 
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Fig. 4 Linear growth model 

Fig. 5 Quadratic growth model 

To further improve the predictive performance of the RF 
model, we implemented hyperparameter tuning and pre-
processing in a nested resampling approach [47]. This 
method allowed us to test for optimal model settings while 
keeping the train and test datasets strictly separated. We 
computed the permutation variable importance using the 
PIMP algorithm [48] to measure the impact of the predictors 
in the RF models.  

The PIMP algorithm outputs the important predictors by 
measuring a decrease in the model’s prediction performance 
after permuting the response variable [49]. We used the 
accumulated local effects (ALE) [50] plot to visualize how 
the predictors influence attention-related behaviors. All 

analyses addressing the research questions were done in R 
version 4.2.2.  

TABLE I PREDICTIVE MODEL ACCURACY 

Method Accuracy RMSE R-square
Multiple linear regression 76.4% 2.82 0.35 

Elastic Net 67.3% 3.57 0.29 
Random forest 94.1% 1.28 0.54 
Naïve Bayes 79.1% 2.01 0.37 

Support Vector Machine 91.2% 1.33 0.51 
Random forest + 10-fold 
cross validation 97.3% 1.07 0.55 
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IV. RESULTS OF THE STUDY

1. RQ1 Participants’ Growth Trajectory of Attention-
Related Behaviors over Time: After estimating the two
growth models, the linear growth curve was a better model
(see Table II). The model has an improved model fit (lower
AIC and BIC; Chi-square = 157.67; df = 38; p-value < 0.00;
TLI = 0.96; CFI = 0.96; RMSEA = 0.02) compared to the
quadratic model which has a mediocre model fit. This
suggests that the participants’ attention-related behaviors
over time occur in a linear pattern and can progress in
upward or downward trend.

TABLE II BASELINE COMPARISONS 

Baselines Linear 
growth model 

Quadratic 
growth model 

AIC 3254.22 3974.58 

BIC 3142.203 3833.76 
Chi-Square 117.67 68.91 
Degree of freedom 233 26 

p-value 0.000 0.000 
TLI 0.963 0.553 
CFI 0.972 0.461 

RMSEA (p-value) 0.021 0.237 

The major importance of LGM is to model the mean 
variance and slope of growth progression across different 
time. From Table III, participants’ initial average attention-
related behavior was 5.76 with a mean variation of 13.2%. 
This indicates that, on average, the participants 
demonstrated a number of on-task behaviors. The average 
rate of progression of the participants’ attention related-
behaviors is 1.32, with a mean variation of 
18.4%.Considering the linearity of our model, the mean 
slope value indicates that the participants’ attentional 
processes increase or decrease by 1.3 units, with a 
significant variation across the students. The significance 
value of the covariance demonstrates the importance of the 
intercept and slope in determining the participants’ growth 
trajectories in their attentional processes. The negative 
correlation between intercept and slope also indicates that 
the participants’ attention-related behaviors seemed to 
converge to a moderate degree.   

TABLE III PARAMETER ESTIMATES FOR LGM 

Estimate S. E p-value
Mean intercept 5.763 0.032 0.000 

Mean slope 1.321 0.031 0.025 
Intercept variance 0.263 0.046 0.011 
Slope variance 0.184 0.026 0.031 

Covariance 0.487 0.033 0.000 
Correlation (r) = -0.346, p-value = 0.021 

2. RQ2 Within- And Between-Person Variability in
Attention-Related Behaviors over Time: Before estimating
the within- and between-person variability, we conducted a
data visualization to explore individual participants’
variation in their attention across the eight weeks
intervention duration using the lattice R package. This
visualization provided us with some insight into how they
vary within and between themselves. From the visualization
(see Fig. S1 in Supporting Information), there isa large
proportion of the participants who exhibit an increase in
attention from off-task to on-task; there are several others
who exhibit relatively stable off-task or on-task; and there
are few others who show a decrease in attention from on-
task to off-task. Based on these variations, it is apparent that
the participants exhibit different attention-related behaviors.
Our multilevel growth model shows that the random effect
is a better model compared to the fixed effect and baseline
models (AIC = 981.27, BIC = 993.55, LogLik = -483.63).
This indicates that students’ attention-related behaviors vary
over the eight weeks of intervention.

Table IV shows the unconditional multilevel growth model. 
There is a significant variation between the participants in 
their attention-related behaviors (estimate = 5.341, p-value 
= 0.00). There is also a significant variation within 
individual participants in their attention-related behaviors 
(estimate = 2.185, p-value = 0.021). To provide more 
insight into the within- and between-person variability, we 
calculated the inter-class coefficient (ICC) using the 
expression below: 

ρ = σ0 / (σ0 + σε) = 5.341 / (5.341 + 2.185) = 0.71 

Where: 
σ0 is the between-person variation, and 
σε is the within-person variation 

TABLE IV UNCONDITIONAL MULTILEVEL GROWTH MODEL 

Variance Estimate S. E p-value

Between-person 5.341 0.322 0.000 
Within-person 2.185 0.046 0.021 
Proportion of total variance of between-persons:    0.71 

Proportion of total variance of within-persons:    0.29 

The inter-class coefficient of 0.71 shows that about 71% 
variations of the participants’ attention-related behaviors are 
accounted for by between-persons while the remaining 29% 
of the variation is accounted for by within-persons. The 
significant variations of within- and between-persons are 
indications that differences in students’ attention-related 
behaviors come from the differences that exist within each 
student and the ones that exist between the students. 
However, the differences that exist between the students are 
a more important indicator of students’ attention-related 
behaviors. Compelling evidence can be seen in Figure S1 in 
Supplementary Information where most of the participants 
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have different intercepts (between-persons) but with a 
relative growth rate (within-persons) over time. 

3. RQ3 Predictors of Students’ Attention-Related Behaviors:
Results from the random forest-based PIMP algorithm
(Fig.6) indicate six important predictors of attention-related
behaviors, including attitude, perceived instructional
quality, spatial ability, cognitive load, teaching topics, and
programming proficiency levels. Explanations of the
influence of these predictors can be found in ALE plots
presented in Fig.7. From the plots, it can be observed that
gender, prior knowledge, and classroom activities do not
have significant influence as evidenced by their stationary
trend. On the other hand, there is an upward trend of
attention-related behavior in relation to an increase in
attitude toward programming from negative to positive.
This suggests that participants with positive attitudes toward
programming are more likely to engage in on-task events
compared to those with negative attitudes. Perceived
instructional quality had a positive effect on attention-
related behavior as indicated by an upward trend. By
implication, students who had positive perceptions about
instructional activities are more likely to have attentional
behaviors that are related to on-task compared to those with
negative perceptions.

The results also show that spatial ability successfully 
predicts students’ attention-related behaviors. The upward 
trend indicates that an increase in attention-related 
behaviors from off-task to on-task is significantly associated 
with increased spatial ability. Thus, students with high 
spatial ability are more likely to engage in quality on-task 

events while those with low spatial ability are more likely to 
engage in off-task events, suggesting the validity of the 
enhancer hypothesis. Another important predictor is the 
cognitive load. The results show a decrease in attention-
related behaviors from on-task to off-task events. This 
downward trend demonstrates that students with low 
cognitive load engaged more in on-task events while those 
with high cognitive load engaged in off-task events.  

Differences in teaching topics also show a significant effect 
on attention-related behavior. The moderate downward 
trend suggests that students were more engaged in on-task 
events when exposed to simple topics such as fundamentals 
of Java, variables, methods, and conditionals. However, 
students’ attention moved slightly to off-task as more 
complex and difficult topics are presented, including loops, 
strings, and arrays. 

Lastly, students’ attention-related behaviors are predicted by 
programming proficiency level. From the results, novice 
and intermediate programmers (mean scores: 1 to 11) had 
relatively stable attention that relates to on-task events. 
Conversely, expert programmers (mean scores: 12 to 15) 
frequently engaged in off-task behaviors. It should be noted 
that a high level of expertise does not lead to extreme off-
task behaviors and low-level expertise does not lead to 
extreme on-task behaviors. This suggests the less 
importance of programming proficiency in predicting 
attention-related behaviors. Nevertheless, there is evidence 
of expertise reversal effect concerning attention-related 
behaviors. Overall, students’ attention-related behaviors are 
influenced by individual and instructional characteristics. 

Fig. 6 Variable Importance estimated from PIMP algorithm 

13 AJSAT Vol.13 No.1 January-June 2024

Exploring Attentional Dynamics in Animated Programming Environments: Trajectories, Variability, and Predictors



Fig. 7 Accumulated local effect plots

V. DISCUSSION OF THE STUDY

This study investigates whether individual and instructional 
characteristics influence students’ attention-related 
behaviors in the context of animated programming 
instructions. We adopted a continuous coding system by 
Goldberg et al., [1] to collect students’ attention-related 
behaviors in eight programming lessons that utilized an 
animated instructional package. We analyzed the resulting 
time-series data with statistical approaches that permitted us 
to model students’ growth trajectory, within- and between-
person variability, and the predictors of their attention-
related behaviors. 

First, we found that the trajectory of overall students’ 
attention-related behaviors is linear rather than quadratic. 
On average, the students demonstrate significant on-task 
events at the initial stage of the instructions but also show a 
significant improvement in their attentional processes as the 
lessons proceed. However, these behaviors tend to be 
idiosyncratic as a considerable number of participants 
remained stable or decelerated in their attention-related 
behaviors while others exhibited increasing quality 
attention. Therefore, we further our analysis to model 
differences within and between participants using a robust 
multilevel growth model. An inspection of the variability 
shows that the participants vary within and between 
themselves, confirming significant differences in their 
attentional processes. Previous studies have supported our 
findings by confirming that students exhibit different 
attention-related behaviors during classroom instruction [1, 
45]. However, we propose that these behavioral differences 
are unique to individual students and are important 
characteristics of a typical classroom setting. We also 
propose that the differences in attentional processes are 

largely accounted for by the variations that exist between 
the students as opposed to the variations that exist within 
the students. Although we found that the students’ attention-
related behaviors converge to a certain degree, the high 
between-person variability calls for urgent interventions to 
narrow students’ attentional processes in a typical animated 
programming classroom. 

As we consider the whole spectrum of attention and 
engagement, it is quite surprising that the students exhibit 
different attention-related behaviors that range from off-task 
to on-task engagement even when they are taught in a 
dynamic multimedia environment that has visual and 
sensory appeal. We expected that there should be a high 
degree of convergence in their attention-related behaviors 
toward on-task engagement due to the sensory-appealing 
nature of multimedia environments. Previous studies have 
acknowledged the potential of animated instructional 
packages to substantially capture and sustain quality 
attention [2, 51].  However, Kelly [7] earlier warned that 
students would often show different attention-related 
behaviors in the same classroom setting regardless of the 
quality of instructional strategies used. We, therefore, 
believed that there must unique factors that are likely to 
account for such behaviors. 

We implemented a machine learning algorithm to examine 
factors predicting differences in students’ attention-related 
behaviors. Our algorithm revealed the importance of some 
individual and instructional characteristics in predicting 
attention-related behaviors. With regard to individual 
characteristics, we found that attitude, cognitive load, 
spatial ability, and programming proficiency are important 
predictors. Regarding attitude effects, we found that a 
positive attitude causes an increase in quality attention and 
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vice versa. We propose that having a positive attitude 
toward a subject can help students pay better attention 
during instruction. When students are optimistic and believe 
they can succeed, they are more likely to engage with the 
material being presented. Conversely, a negative attitude 
can lead to disinterest or even hostility toward the 
instruction, making it difficult for students to focus. In 
support of our position, a previous study has shown a 
substantial relationship between attitude and learning 
outcome, indicating that attitudinal effects are important 
predictors of attention [52]. 

We also found the presence of a cognitive load effect on 
attention-related behaviors. Students with high cognitive 
load were more likely to engage in off-task events while 
those with low cognitive load engaged more in on-task 
events. The importance of the cognitive load effect in the 
context of multimedia environments has been extensively 
explained by cognitive load theory [31]. This theory 
proposed that the transitory nature of multimedia elements 
has the potential to overload students’ memory. To 
counterbalance this transition, the students would then 
engage in quality off-task behaviors as a sign of memory 
saturation and weak cognitive processing challenges [30]. 
Such processing challenges may be severe if the presented 
instruction is complex and unfamiliar to the students. In 
their recent study, Yusuf and Noor [3] reported that high 
processing demands as a result of cognitive load will force 
students to be very selective in what they deem necessary 
and important during instruction. One prior study has 
provided more explanation and argued that the cognitive 
load effect depends on the duration of the entire animated 
lessons [53]. Thus, students are more likely to experience a 
high cognitive load under long-section animation, leading to 
high off-task engagement. Overall, the cognitive load effect 
calls for the design and integration of simple and interactive 
multimedia environments into teaching for improving 
students’ quality attention. 

We found some evidence of the enhancer hypothesis [32] as 
participants with high spatial ability engaged more in on-
task classroom events. Prior studies that supported our study 
have confirmed the validity of the enhancer hypothesis by 
indicating that 3D multimedia environments enhance the 
visual attention of high-spatial ability learners [35]. The 
present study also found some evidence of the expertise 
reversal effect because novice and intermediate 
programmers engaged more in on-task behaviors while the 
expert programmers engaged more in off-task behaviors. 
We propose in our previous study that animated 
instructional environments are sometimes not inclusive 
because they are largely beneficial to novice and 
intermediate programmers but become counterproductive to 
expert programmers. 

Explanations have been offered for the reason of the 
expertise reversal effect in most animated environments. 
According to Kalyuga [54], this effect occurs when learners 
are presented with already familiar information. In such 

cases, learners may process the information too quickly and 
ignore its content, as they are more focused on anticipating 
higher-level mental objects. Previous studies have also 
found that incorporating dynamic animation as additional 
instructional guidance can be more beneficial for novice 
learners, but counterproductive for experts who do not 
require such guidance [55]. This is because; experts need to 
reconcile the additional guidance with existing information 
in their schema, which further increases their cognitive load. 

Within the domain of individual characteristics, we were not 
able to replicate prior findings that indicate significant 
effects of gender and prior knowledge on students’ 
attention-related behaviors [56, 57]. We, therefore, propose 
that everyone is capable of developing different attention-
related behaviors regardless of their gender category and 
level of exposure to animated instruction. As science 
educators, we always understand and appreciate the need for 
gender inclusivity. For this reason, expanding programming 
tools to meet the expectations of all gender categories has 
been our top priority. We, therefore, question the 
intervention fidelity and overall validity of prior studies that 
reported gender effect on attentional processes. We strongly 
believe that this effect could be weakened when all gender 
categories are carried along during instruction. This effort is 
within the capacity of teachers as opposed to other 
individual student characteristics. 

In addition to individual student characteristics, we also 
found important predictors of attention-related behaviors in 
relation to instructional characteristics. Important predictors 
include perceived instructional quality and teaching topics. 
Specifically, we found that students who perceived our 
instruction as having high quality were more attentive 
during instruction as evidenced by their on-task behaviors. 
The effect of perceived instructional quality on attentional 
processes can be explained from the lens of learning style. 
Every classroom is made up of students with unique 
differences in terms of learning style. Research has shown 
that students perceive classroom instruction as having 
quality when it meets their learning preferences [13]. 
Specifically, three components of instructional quality have 
been proposed to positively impact students’ attention, 
including a safe and orderly classroom, cognitive activation, 
and teacher support. Fauth et al., [58] supported this finding 
by demonstrating that teacher support, cognitive activation, 
and classroom management were significantly related to the 
development of subject-specific interest, leading to positive 
attention-related behaviors. In their study, Goldberg et al., 
[1] reported a significant effect of cognitive activation and
classroom management on students’ attention-related
behaviors. From these compelling pieces of literature
evidence, it is evident that perceived instructional quality
plays a critical role in shaping students’ attention-related
behaviors.

As the requirements for classroom dynamics become 
necessary for every classroom setting, we included 
information about teaching topics and classroom activities 
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in our analysis. Our results demonstrate that teaching topics 
predict attention-related behaviors. Specifically, we found 
that simple topics attracted students to exhibit quality on-
task engagement as opposed to difficult topics. This finding 
opposed the results of a prior study which revealed that 
lesson contents cannot be decisive in predicting students’ 
attention-related behavior [1]. While teaching topics was an 
important predictor of attention-related behaviors, we could 
not find a significant effect of classroom activities. 
However, we did not rule out the significant effect of this 
predictor as prior research has reported such an effect with 
convincing evidence [1]. 

Based on these findings, we proposed that students’ 
attention-related behaviors can be explained by individual 
(attitude, cognitive load, spatial ability, proficiency level) 
and instructional characteristics (teaching topics). To this 
end, our study has successfully added additional factors to 
the determinants of attention and engagement behaviors, 
thereby contributing to the ongoing refinement of 
instructional models. However, we still feel that these 
factors are not exhaustive. Therefore, other studies are 
needed to come up with more convincing factors. In the 
meantime, future research exploring instructional 
effectiveness should pay closer attention to classroom 
dynamics [1]. Researchers examining the effectiveness of 
an instructional strategy should also know that such 
strategies might be prone to error due to the unavoidable 
occurrence of attention-related behaviors in every classroom 
setting. The within- and between-person variability of 
students’ attentional processes should be controlled to a 
higher degree. 

VI. LIMITATIONS OF THE STUDY

The major limitation of this study is the use of continuous 
rating that involves annotations of video data in steps of 5-
second interval. We have some concerns about this because 
some behaviors occur in milliseconds and using the 5-
second interval might leave out important behavioral 
occurrences [1]. However, while time interval coding could 
lack the accuracy of recording onset and offset events, 
several authors accept it as a subtle approach to synchronize 
the concurrent recording of separate streams of behaviors 
[40, 59]. In our recent study, we proposed that 5-second 
intervals are more sufficient to capture useful information 
about students’ behavior as well as track an adequate 
number of discrete data points for statistical analysis. 
Therefore, employing a 5-second interval rating could have 
substantial validity. 

VII. CONCLUSION

Our study has demonstrated the potential of utilizing rich 
video data to investigate growth trajectories in attention-
related behaviors and to examine the determinants of such 
behaviors. By employing statistical models, we have found 
that the overall participants’ growth trajectory in attentional 
processes is linear and accelerates relatively over time. 

However, the level of this growth trajectory is idiosyncratic 
to individual students, thereby creating unique variations 
between and within them. The results of the study highlight 
the important role of individual and instructional 
characteristics in shaping students’ attention. Firstly, the 
extent to which students attach meaningful feelings, beliefs, 
and actions toward a subject can influence their behavior in 
the classroom. Furthermore, their cognitive abilities, 
including levels of invested mental effort, task difficulty, 
spatial abilities, and expertise, strongly influence their 
behavior. On the other hand, instructional characteristics 
that are unique to individual classrooms also predict 
students’ attention. These include cognitive activation, 
teacher support, classroom management, and teaching 
topics. The study underscores the importance of structured 
topics, safe classroom environments, quality instructional 
support, and interactive multimedia objects to activate 
students’ memory, alleviate task difficulty, and reduce the 
mental resources required for meaningful learning. While 
these can be highly effective, encouraging students to 
demonstrate positive behaviors during instructions can help 
teachers cultivate an engaging classroom culture. Teachers 
can reassure students that they will achieve meaningful 
learning if they maintain positive behaviors. To this end, we 
recommend that further research be conducted to uncover 
additional determinants of attention-related behaviors. 
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