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Abstract: The mathematical model of immobilized enzyme 
system in porous spherical particle is presented.  This model is 
based on a non-stationary diffusion equation containing a 
nonlinear term related to Michaelis-Menten kinetics of 
enzymatic reaction. A general and closed form of an analytical 
expression pertaining to the substrate concentration profile 
and effectiveness factor are reported for all possible values of 
Thiele modules φ   andα . However, we have employed New 
Homotopy Perturbation Method (NHPM) to solve the non-
linear reaction/diffusion equation in immobilized enzymes 
system. Therefore, analytical results were found to be in an 
appropriate agreement with simulation result. 
Keywords: Diffusion-Reaction, Immobilized Enzymes, 
Biosensors/bio-fuel cells, New Homotopy perturbation method, 
Michaelis-Menten kinetics,  Effectiveness factor. 

I.INTRODUCTION

The pros of using immobilized enzymes on a porous support 
is that the enzyme can be segregated easily from the 
reaction of bulk and recycled. Therefore, the reaction takes 
place inside the particles; the reaction rate can be influnced 
by the external diffusion processes and by diffusion within 
the particles.  Most previously published enzymatic kinetic 
models involve non reversible Michaelis Menten kinetics 
are solved by numerical method. Among these models, 
some of the most relevant are those proposed by Engasser 
and Horvath [2], for a simple Michaelis Menten kinetics, 
modified by Tuncel [3]; the solution developed by Xiu et al. 
[4] for product competitive inhibition kinetics; or the two –
substrate model formulated by Engasser and Hisland [5].

Hence, a little attention has been given to more complex 
kinetics such as reversible reactions [6]. The three- 
parameter model was developed by  Bodalo et al. [7] and 
the two- parameter   model reformulated by the same 
authors [8] could be considered the most general 
mathematical model published to date. The models were 
solved for reversible Michaelis – Menten kinetics, which 
also allows the evaluation of simple Michaelis – Menten  
and product competitive inhibition kinetics. The first model 
has been successfully applied in the design  of 
heterogeneous enzymatic reactors: fixed bed reactors [9], 
continuous tank reactors[10] and fluidized bed reactors [11]. 
The same methodology applied to the simulation of a 

packed bed immobilized enzyme reactor performing lactose 
hydrolysis[12, 13]. All the above mentioned – cited kinetic 
models were solved by numerical method because reaction 
rate is a non- linear function of the substrate and product 
concentrations. Analytical solutions are obtained only for 
the limiting cases. The approximate analytical solutions, 
valid only in a limited range of the parameters, have also 
been published and elaborated. [14 -16]. 

Several numerical methods have been used to solve the 
boundary problems outlined in Eqs. (1) and (2). The most 
frequently used are finite differences [17] and orthogonal 
collocation [18], which transformed the problem into a 
system of algebraic equations. When the mass balance 
equations are non- linear, as in enzymatic kinetics, the result 
is also a non –linear equations system. The solution 
obtained by the predetermined differences method may not 
be exceptional; moreover, convergence problems could 
appear. On the other hand, since the orthogonal collocation 
method uses polynomial expressions to approach the 
concentration profiles, the method is not very reliable when 
high diffusional inadequacy occurs.  Highlighting of the 
above, many authors have owned initial value procedure 
such as the Runge- Kutta method. Such techniques need to 
know the substrate concentration  value at r =0. Since this 
value is unknown , the concentration profiles must be 
calculated based on an assumed value which would be 
adjusted by successive calculations (shooting method)[19]. 

Up to the excellence of our knowledge, no general 
analytical results for the steady-state substrate concentration 
and current for all values of parameters φ  and α  have 
been stated. The purpose of this communication is to derive 
expression for the steady-state substrate concentration and 
effectiveness factor in closed form for small values of 
parameters using the new Homotopy perturbation method. 

II. MATHEMATICAL FORMULATION OF THE
PROBLEM AND ANALYSIS 

The mathematical models for estimating the effectiveness 
factor in heterogeneous enzymatic systems are based on the 
following assumptions: (i) The catalytic particle is spherical 
and its radius is R . (ii) The enzyme is uniformly 
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distributed throughout the whole catalytic particle. (iii) The 
system is stable and isothermal. Under these above 
assumptions, the differential mass balance equation for 
substrate and product in spherical co-ordinates are as 
follows [20]: 
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and SC  and PC  denote the  substrate and product 

concentration, r is the radial co-ordinate. The form of SV  
determines the mathematical method to solve the above 
equations and its complexity. Most of them are already 
published articles on enzymatic solution were dealt with 
non-reversible Michaelis-Menten kinetics. The present 
model is an improvement based on the previously 
formulated three parameter model [21], since only two 
parameters are necessary to reach the solution. Adding 
equations (1) and (2) and using the boundary conditions the 
following relationship can be established: 
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Where SEC  and PEC  are the equilibrium substrate and 
product concentration. We make the non-linear differential 
equations outlined in equation (1) and (2) in dimensionless 
form by introducing the following dimensionless 
parameters: 
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The mass balance differential equation for substrate in 
spherical co-ordinates for two parameter model is [21]: 
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Where S  is the substrate concentration and ρ  is the 
dimensionless particle radial coordinate and φ  and α  are 
the dimensionless modules. The boundary conditions are 
represented as follows: 

0=
ρd

dS
 when 0=ρ                 (11)                                                                                                      

1=S  when 1=ρ                       (12)                                                                                            
The effectiveness factor can be evaluated as [20]:   
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III. ANALYTICAL SOLUTION OF THE 

CONCENTRATION USING NEW HOMOTOPY 
PERTURBATION METHOD 

 
Present Era, many authors have applied the new Homotopy 
perturbation method (NHPM ) to solve the non-linear 
problem in physics and engineering sciences [22-26]. 
Recently this method is also used to solve some of the non-
linear problem in physical sciences [27-31]. This method is 
a combination of homotopy in topology and classic 
perturbation techniques. Ji-Huan He introduced new 
Homotopy perturbation method to solve the Lighthill 
equation [32], the diffusion equation [33] and the blasius 
equation [34]. The NHPM is unique in its applicability, 
accuracy and efficiency. The NHPM uses the imbedding 
parameter p as a small parameter, and only a few iterations 
are needed to search for an asymptotic solution, NHPM 
yields a very swift convergence and usually, one iteration 
leads to high accuracy of solution. Solving equations (10) to 
(12) using Homotopy-perturbation method (Appendix A), 
we get the solution as 
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Using Eq. (13), we can obtain the effectiveness factor
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 The equations (13) and (14) represent the new and simple 
analytical expression of concentration of substrate and 
effectiveness factor of packed bed reactor. 
 

IV. NUMERICAL SIMULATION 
 

The non-linear differential equation (10) is solved by 
numerical methods. The function pdex4 in SCILAB 
software which is a function of solving the boundary value 
problems for ordinary differential equation is used to solve 
this equation. Its numerical solution is compared with new 
Homotopy perturbation method in figures 1 to 4 and it gives 
a satisfactory agreement with analytically result.  
 

V.DISCUSSION 
 

The Thiele modulus  φ  can be varied by changing either 
the particle radius or the amount of local concentration of 
substrate. This parameter estimates the relative importance 

of diffusion and reaction in the particle radius. When φ  is 
small, the kinetics are the determining factor; the overall 
uptake of substrate in the enzyme matrix is kinetically 
controlled. Under these conditions, the substrate 
concentration profile across the membrane is essentially 
uniform. In contrast, when the Thiele modulus is large, 
diffusion limitations are the principal determining factor.   
        
Figures. 1(a) and 1(b) show the dimensionless steady-state 
substrate concentration )(ρS  for the different values of φ  
calculated using Eq. (14). From these figures, it is imply 
that the value of the concentration increases when φ  
decreases. Figures.2(a) and 2.(b) show the dimensionless 
steady-state substrate concentration )(ρS  for the different 
values of φ  calculated using Eq. (14). From these figures, it 
is inferred that the value of the concentration increases 
when α  decreases. It is known that the value of the 
concentration of substrate increases gradually and attains 
the maximum at the boundary ( ρ =1).  

 
 

 

  
Fig.1 Influence of dimensionless module φ  on the concentration profile of substrate S  obtained from our approximate solution  

presented in this work (equation (14) solid line) and from the simulation result (dot line). The plot was constructed  
when (a) 2=α , (b) 5=α  
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Fig.2 Influence of dimensionless module α  on the concentration profile of substrate S  obtained from our approximate solution  

presented in this work (equation (14), solid line) and from the simulation result (dot line). The plot was constructed for (a) 2=φ , (b) 5=φ  

 
The normalized numerical simulation of three dimensional 
steady-state substrate concentration )(ρS  is shown in 
Figures. 3.(a) and 3(b). The time independent concentration 
is designated in Figures.3 (a) for fixed value of 2=α  and 
in Figures.3 (b) for some value of 5=α  . Concentration 

)(ρS  is gradually diminishing when φ  is enlarging. Then 

the concentration of 1)( =ρS  when 1=ρ  and also for all 
values of  α .  In these figure, it should be noted that the 
value of the concentration of substrate decreases when  φ   
increases. From this figures, it is apparent that the value of 
the concentration of substrate increases  when α  increases.  

 
 
 

 

 
 
Fig.3 The normalized three dimensionless steady-state concentration profiles S calculated using equation (14) .The plot was constructed for the 

values of  (a) 2=α , (b) 5=α  
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Fig.4 The normalized three dimensionless steady-state concentration profiles S calculated using equation (14) .The plot was constructed  

for the values of  (a) 2=φ , (b) 5=φ  

 

 
 

Fig.5 Plot of the effectiveness factor η versus dimensionless parameterφ . The effectiveness factor η  were computed using equation (15) 

 
The normalized numerical simulation of three dimensional 
steady-state substrate concentration )(ρS  is shown in 
Figures.4(a) and 4(b). The time independent concentration 
ρ  is represented in Figure.4(a) for fixed value of 2=φ  
and Figure.4(b) for fixed value of 5=φ   Concentration 

)(ρS  is slowly decreasing when α  is deccreasing. Then 
the concentration of substrate is uniform when ρ =1 and  
all values of  φ .  In these figure, it should be provided that 
the value of the concentration of substrate decreases for all 
values ofφ . The indifference in effectiveness factor η  for 
various values of φ  and α  using Equation (15) is shown in 
Figures 5(a) and 5(b). From Figures,  it is it is inferred that 
effectiveness factor η decreases when φ  increases. 

 
VI.CONCLUSION 

 
The time independent non-linear reaction/diffusion equation 
in immobilized enzyme system has been formulated and 

solved analytically. An approximate analytical expression 
for the concentration and effectiveness factor under steady 
state conditions are obtained by using the  new homotopy 
perturbation method (NHPM). The primary results of our 
work were simple approximate calculation of concentration 
and effectiveness factor for all values of parameters φ  
andα . This procedure can be applied to find the solution of 
all other non-linear reaction diffusion equations in 
immobilized enzymes for various complex boundary 
conditions. 
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APPENDIX - I 
 

Solution of the equation (8) using new Homotopy perturbation method 
 

In this appendix, we indicate how Eq.  (12) in this paper is derived.  To find the solution of Eq. (8), we first construct a 
Homotopy as follows: 
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  the initial approximations are as follows:
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Substituting Eq. (A2) into Eq. (A1) and arranging the like coefficients of powers p , we can obtain the following differential 
equations 
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The boundary condion are 
0  ;0 0 == ρρ ddS   (A4),       1  ;1 0 == Sρ     (A5) 

Solving equations (A1)  using reduction of order  the Eq. (A3), we can find the following results 
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Nomenclature 
Symbol Meaning Usual dimension 

PC  Product concentration inside the spherical particle Mole/cm 3  

PEC  Equilibrium product concentration Mole/cm 3  

PRC  Local product concentration at particle surface Mole/cm 3  

SC  Substrate concentration inside the spherical particle Mole/cm 3  

SEC  Equilibrium substrate concentration Mole/cm 3  

SRC  Local substrate concentration at particle surface Mole/cm 3  

PD  Effective product diffusivity inside the particle Cm 2 sec 1−  

SD  Effective substrate diffusivity inside the particle Cm 2 sec 1−  

eqK  Equilibrium constant none 

MK  Michaelis constant Mole/cm 3  

PK  Competitive product inhibition constant none 

r  Radial coordinate of the particle Cm 

R  Radius of the particle Cm 

S  
Dimensionless substrate concentration, defined as 

SRS CC  for the two-parameters model Mole/cm 3  

mV  Maximum reaction rate per unit of catalytic particle 
volume Mole/cm 3 sec 

SV  Local reaction rate per unit of catalytic particle volume Mole/cm 3 sec 
Greek symbols 
α  Dimensionless module for two parameter model none 

φ  Dimensionless module for two parameter model none 
η  Effectiveness factor none 
ρ  Dimensionless particle radial coordinate none 
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