On $M_X \alpha \psi_{\langle \widetilde{\mathcal{H}} \rangle}$ in terms of Minimal Structure Spaces

M.Parimala

Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam – 638401, Tamil Nadu, India E-mail: rishwanthpari@gmail.com

(Received 6 December 2014; Revised 24 December 2014; Accepted 21 January 2015; Available online 27 January 2015)

Abstract - In this paper we introduce the notion of $M_X \alpha \psi$ irresolute and $M_X \alpha \psi(\widetilde{\mathcal{H}})$. Further, we derive some properties of $M_X \alpha \psi(\widetilde{\mathcal{H}})$ and Pasting Lemma for $M_X \alpha \psi$ -irresolute functions.

AMS Subject Classification: 54A05, 68U05, 69U10

Keywords: $M_X \alpha \psi$ -closed sets, $M_X \alpha \psi$ -open sets, $M_X \alpha \psi$ continuous maps, $M_X \alpha \psi$ -irresolute maps, $M_X \alpha \psi (\widetilde{\mathcal{H}})$.

I. INTRODUCTION

In 1950, H. Maki et al. [6] introduced the notions of minimal structure and minimal space. Also they introduced the notion of m_x -open set and m_x -closed set and characterize those sets using m_x -cl and m_x -int operators respectively. Further they introduced *m*-continuous functions [11] and studied some of its basic properties. They achieved many important results compatible by the general topology case. Some other results about minimal spaces can be found in [1, 2, 3, 4, 7, 8, 11, 12].

The notion of $M_X \alpha \psi$ -closed set and $M_X \alpha \psi$ -continuous function were introduced and studied by M. Parimala [10]. In this paper we introduce $M_X \alpha \psi$ -irresolute and $M_X \alpha \psi(\widetilde{\mathcal{H}})$. Further, we obtain some characterizations and properties.

II. PRELIMINARIES

In this section, we introduce the \mathcal{M} -structure and define some important subsets associated to the \mathcal{M} -structure and the relation between them.

Definition 2.1 [6] Let X be a nonempty set and let $m_X \subseteq P(X)$, where P(X) denote the power set of X. Where m_X is an \mathcal{M} -structure (or a minimal structure) on X, if φ and X belong to m_X .

The members of the minimal structure m_X are called m_X open sets, and the pair (X, m_X) is called an *m*-space. The complement of m_X -open set is said to be m_X -closed.

Definition 2.2 [6] Let X be a nonempty set and m_X an \mathcal{M} -structure on X. For a subset A of X, m_X -closure of A and m_X -interior of A are defined as follows:

 $m_X - cl(A) = \bigcap \{F : A \subseteq F, X - F \in m_X\}$ $m_X - int(A) = \bigcup \{F : U \subseteq A, U \in m_X\}$

Lemma 2.3 [6] Let X be a nonempty set and m_X an M-structure on X. For subsets A and B of X, the following properties hold:

- (a) $m_X cl(X A) = X m_X int(A)$ and $m_X int(X A) = X m_X cl(A)$.
- (b) If X − A ∈ m_X, then m_X-cl(A) = A and if A ∈ m_X then m_X-int(A) = A m_X-int(A) = A.
- (c) $m_X cl(\varphi) = \varphi$, $m_X cl(X) = X$, $m_X int(\varphi) = \varphi$ and $m_X - int(X) = X$.
- (d) If $A \subseteq B$ then $m_{X^{-}}$ $cl(A) \subseteq m_{X^{-}}cl(B)$ and $m_{X^{-}}int(A) \subseteq m_{X^{-}}int(B)$.
- (e) $A \subseteq m_x$ -cl(A) and m_x -int(A) $\subseteq A$.
- (f) m_X-cl(m_X-cl(A)) = m_X-cl(A) and m_X-int(m_X-int(A)) = m_X-int(A).
- (g) $m_X \operatorname{-int}(A \cap B) = (m_X \operatorname{-int}(A)) \cap (m_X \operatorname{-int}(B))$ and $(m_X \operatorname{-int}(A)) \cup (m_X \operatorname{-int}(B)) \subseteq m_X \operatorname{-int}(A \cup B).$
- (h) m_X -cl($A \cup B$) = $(m_X$ -cl(A)) $\cup (m_X$ -cl(B)) and m_X -cl($A \cap B$) $\subseteq (m_X$ -cl(A)) $\cap (m_X$ -cl(B)).

Lemma 2.4 [11] Let (X, m_X) be an *m*-space and *A* a subset of *X*. Then $x \in m_X$ -cl(*A*) if and only if $U \cap A \neq \varphi$ for every $U \in m_X$ containing *x*.

Definition 2.5 [8] A minimal structure m_X on a nonempty set X is said to have the property B if the union of any family of subsets belonging to m_X belongs to m_X .

Remark 2.6 [5] A minimal structure m_X with the property **B** coincides with a generalized topology on the sense of Lugojan.

Lemma 2.7 [2] Let X be a nonempty set and m_X an M-structure on X satisfying the property \mathbb{B} . For a subset A of X, the following property hold:

- (a) $A \in m_X$ iff m_X -int(A) = A
- (b) $A \in m_X$ iff $m_X cl(A) = A$
- (c) m_x -int(A) $\in m_x$ and m_x -cl(A) $\in m_x$.

- **Definition 2.8.** A subset A of an m-space (X, m_x) is called
 - (a) $m_X \alpha$ -open set [10] if $A \subseteq m_X int(m_X cl(m_X int(A)))$ and an $m_X \alpha$ closed set if $m_X cl(m_X int(m_X cl(A))) \subseteq A$.
 - (b) m_x-pre open set [12] if A ⊆m_xint(m_xcl(A)) and an m_x- pre closed set if m_xcl(m_xint(A)) ⊆ A.
 - (c) m_X -semi open set [12] if $A \subseteq m_X cl(m_X int(A))$ and an m_X - semi closed set if $m_X int(m_X cl(A)) \subseteq A$.

Definition 2.8. A subset A of an *m*-space (X, m_X) is called

- (a) an m_X-semi generalized-closed [12] (briefly m_X-sg-closed) set if m_X-scl(A) ⊆ U whenever A ⊆ U and U is m_X-semi-open in (X, m_X). The complement of an m_X-sg-closed set is called an m_X-sg-open set.
- (b) an m_X- ψ -closed [10] set if m_X-scl(A) ⊆ U whenever A ⊆ U and U is m_X-sg-open in (X, m_X). The complement of an m_X- ψ -closed set is called an mX- ψ -open set.
- (c) an m_X- αψ -closed [10] set if m_X-ψcl(A) ⊆ U whenever A ⊆ U and U is m_X- α -open in (X, m_X). The complement of an m_X- αψ -closed set is called an m_X αψ -open set.

III. PROPERTIES OF $\mathcal{M}_X \alpha \psi \langle \mathcal{H} \rangle$

Definition 3.1. A function $f:(X, m_X) \to (Y, m_Y)$ is called

- (a) M_Xαψ-continuous [10] if f⁻¹(V) is M_Xαψclosed in (X, m_X) for every m_X-closed set V of (Y, m_Y),
- (b) $\mathcal{M}_X \alpha \psi$ -irresolute if $f^{-1}(V)$ is $\mathcal{M}_X \alpha \psi$ -closed in (X, m_X) for every $\mathcal{M}_X \alpha \psi$ -closed set V of (Y, m_Y) .

Definition 3.2. A function $f:(X, m_X) \to (Y, m_Y)$ is called $\mathcal{M}_X \alpha \psi$ -homeomorphism (briefly $\mathcal{M}_X \alpha \psi(\widetilde{\mathcal{H}})$.) if both f and f^{-1} are $\mathcal{M}_X \alpha \psi$ -irresolute and f is bijective.

Lemma 3.3. Let $B \subseteq H \subseteq (X, m_X)$ and let $m_X \setminus H$ be the relative *m*-spaces of *H*.

- (a) If **B** is $\mathcal{M}_X \alpha \psi$ -closed in (X, m_X) , then **B** is $\mathcal{M}_X \alpha \psi$ -closed relative to **H**.
- (b) If **B** is $\mathcal{M}_X \alpha \psi$ -closed in a subspace $(H, m_X \setminus H)$ and if **H** is clopen in (X, m_X) .

Note that a subset H of m-space (X, m_X) is $\mathcal{M}_X \alpha \psi$ -clopen if and only if H is open and $\mathcal{M}_X \alpha \psi$ -closed. We prepare some notations. Let $f : X \to Y$ be a function and H a subset of (X, m_X) . Let $f \setminus H : H \to Y$ be the restriction of f to H. We define a function $\eta_{H,K(f)}: H \to K$ by $\eta_{H,K(f)}(x) = f(x)$ for any $x \in H$, where K = f(H). Then, $f \setminus H = j \circ r_{H,K(f)}$ holds, where $j : K \to Y$ is an inclusion.

Theorem 3.4. Let H and K be subset of (X, m_X) and (Y, m_Y) respectively.

- (a) If f:(X,m_X) → (Y,m_Y) is M_Xaψ-irresolute and if H is a M_Xaψ-clopen subset of (X,m_X), then the restriction f\H: (H, m_X\H) → (Y, m_Y) is M_Xaψ-irresolute.
- (b) Suppose that K is a M_Xαψ-clopen subset of (Y, m_Y). A function K : (X, m_X) → (K, m_Y \K) is M_Xαψ-irresolute if and only if j ∘ k:(X, m_X) → (Y, m_Y) is M_Xαψ-irresolute, where j : (K, m_Y \K) → (Y, m_Y) is an inclusion.
- (c) If f:(X,m_X) → (Y,m_Y) is a M_Xαψ, H such that f(H) = K and K are M_Xαψ-clopen subset, then n_{H,K(f)}:(H,m_X\H) → (K,m_Y\H) is also M_Xαψ, H.

Proof: (a) Let F be a $\mathcal{M}_X \alpha \psi$ -closed set of (Y, m_Y) . Since f is $\mathcal{M}_X \alpha \psi$ -irresolute, $(f \setminus H)^{-1} = f^{-1} \cap H$, H is $\mathcal{M}_X \alpha \psi$ -closed, $(f \setminus H)^{-1}(F)$ is $\mathcal{M}_X \alpha \psi$ -closed in $(H, m_X \setminus H)$ by Lemma 3.3(a). Therefore $f \setminus H$ is $\mathcal{M}_X \alpha \psi$ -irresolute.

(b) Necessity: Let F be a $\mathcal{M}_X \alpha \psi$ -closed set of (Y, m_Y) . Then $(j \circ k)^{-1}(F) = k^{-1}(j^{-1}(F)) = k^{-1}(F \cap H)$ is a $\mathcal{M}_X \alpha \psi$ -closed in $(K, m_Y \setminus K)$ by Lemma 3.3(a). Therefore $j \circ k: (X, m_X) \to (Y, m_Y)$ is $\mathcal{M}_X \alpha \psi$ -irresolute.

Sufficiency: Let V be a $\mathcal{M}_X \alpha \psi$ -closed set of $(K, m_Y \setminus K)$. By Lemma 3.3(b), $(j \circ k)^{-1}(V) = k^{-1}(j^{-1}(V)) = k^{-1}(F \cap V) = k^{-1}(F)$ is $\mathcal{M}_X \alpha \psi$ -closed in (X, m_X) . Therefore k is $\mathcal{M}_X \alpha \psi$ -irresolute.

(c) First, it suffices to prove $\eta_{H,K(f)}$: $(H, m_X \setminus H) \to (K, \sigma \setminus K)$ is $\mathcal{M}_X \alpha \psi$ -irresolute. Let F be a $\mathcal{M}_X \alpha \psi$ -closed subset of (Y, m_Y) .

 $(j \circ r_{\mathrm{H},\mathrm{K}(f)})^{-1}(F) = (f \setminus H)^{-1}(F) = (f \setminus H)^{-1}(F \cap K) = f^{-1}(F \cap K) = f^{-1}(F) \cap K$ is $\mathcal{M}_{X} \alpha \psi$ -closed in $(H, m_{X} \setminus H)$ and hence $j \circ r_{\mathrm{H},\mathrm{K}(f)}$ is $\mathcal{M}_{X} \alpha \psi$ -irresolute. By (b) $r_{\mathrm{H},\mathrm{K}(f)}$ is $\mathcal{M}_{X} \alpha \psi$ -irresolute.

Next we show that $r_{\mathbf{H},\mathbf{K}(\mathbf{f})}^{-1}:(K,m_{\mathbf{X}}\setminus K) \to (H,m_{\mathbf{X}}\setminus H)$ is $\mathcal{M}_{\mathbf{X}}\alpha\psi$ -irresolute. Since $(r_{\mathbf{H},\mathbf{K}(\mathbf{f})})^{-1} = r_{\mathbf{H},\mathbf{K}(\mathbf{f}^{-1})}$ and since f^{-1} is $\mathcal{M}_{\mathbf{X}}\alpha\psi$ -irresolute, then using the first argument above for f^{-1} we have $(r_{\mathbf{H},\mathbf{K}(\mathbf{f})})^{-1}$ is $\mathcal{M}_{\mathbf{X}}\alpha\psi$ -irresolute. Therefore $r_{\mathbf{H},\mathbf{K}(\mathbf{f})}$ is a $\mathcal{M}_{\mathbf{X}}\alpha\psi$. By using *Theorem 3.4*, for

a $\mathcal{M}_{X} \alpha \psi$ -clopen subset H of (X, m_{X}) , we have a homomorphism called restriction $(r_{H})^{\#}: \mathcal{M}_{X} \alpha \psi, \mathcal{H}(X, H; m_{X}) \to \mathcal{M}_{X} \alpha \psi, \mathcal{H}(H, m_{X} \setminus H)$ as follows: $(r_{H})^{\#}(f) = r_{H,K(f)}$ for any $f \in \mathcal{M}_{X} \alpha \psi, \mathcal{H}(X, H; m_{X})$. To prove that $(r_{H})^{\#}$ is onto we prepare the following:

Lemma 3.5. (PASTING LEMMA FOR $\mathcal{M}_X \alpha \psi$ -IRRESOLUTE FUNCTIONS)

Let (X, m_X) be a *m*-space such that $X = A \cup B$ where *A* and *B* are $\mathcal{M}_X \alpha \psi$ -clopen subsets. Let $f : (A, m_X \setminus A) \to (Y, m_Y)$ and

 $g: (B, m_X \setminus B) \to (Y, m_Y)$ be $\mathcal{M}_X \alpha \psi$ -irresolute functions such that f(x) = g(x) for every $X \in A \cap B$. Then the combination $f \nabla g(x) = f(x)$ for any $x \in A$ and $f \nabla g(y) = g(y)$ for any $y \in B$.

Proof: Let F be $\mathcal{M}_X \alpha \psi$ -closed set of (Y, m_Y) . Then $(f \nabla g)^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$,

 $f^{-1}(F) \in \mathcal{M}_X \alpha \psi C(X, m_X)$ by using Lemma. It follows from Theorem 3.17 [13] that $f^{-1}(F) \cup g^{-1}(F)$ is $\mathcal{M}_X \alpha \psi$ closed in (X, m_X) . Therefore $(f \nabla g)^{-1}(F)$ is $\mathcal{M}_X \alpha \psi$ -closed in (X, m_X) and hence $f \nabla g$ is $\mathcal{M}_X \alpha \psi$ -irresolute.

Theorem 3.6. If H is a $\mathcal{M}_{X} \alpha \psi$ -clopen subset of (X, m_{X}) , then

 $(r_H)^{\#}: \mathcal{M}_X \alpha \psi(\widetilde{\mathcal{H}})(X, H; m_X) \to \mathcal{M}_X \alpha \psi(\widetilde{\mathcal{H}})(H, m_X \setminus H)$ is an onto homomorphism.

Proof. Let $k \in \mathcal{M}_X \alpha \psi(\overline{\mathcal{H}})(H, m_X \setminus H)$. By Theorem 3.4, $l_1 \circ k: (H, m_X \setminus H) \to (X, m_X)$ is $\mathcal{M}_X \alpha \psi$ -irresolute, where $l_1: (H, m_X \setminus H) \to (X, m_X)$ is an inclusion. Similarly it is shown that $l_2 \circ l_{X \setminus H}: (X \setminus H, m_X(X \setminus H)) \to (X, m_X)$ is $\mathcal{M}_X \alpha \psi$ -irresolute, where $l_2: (X \setminus H, m_X(X \setminus H)) \to (X, m_X)$ is an inclusion.

Bv using Lemma 3.5, the combination $(J_1 \circ k) \nabla (J_2 \circ l_{X \setminus H}): (X, m_X) \to (X, m_X)$, say k_1 is $\mathcal{M}_X \alpha \psi$. irresolute. It is easily shown that $k_1(x) = k(x)$ for any $x \in H$ and k_1 is bijective and $k_1^{-1} = (J_1 \circ k^{-1}) \nabla (J_2 \circ l_{X \setminus H}) : (X, m_X) \rightarrow (X, m_X)$ is also $\mathcal{M}_{x} a \psi$ -irresolute. Therefore $k_1: (X, m_x) \to (X, m_x)$ is the required $\mathcal{M}_{\mathbf{X}} \alpha \psi \mathcal{H}$ and $(r_{\mathbf{H}})^{\#}(k_1) = k$ holds and hence $(r_R)^{\#}$ is onto. We define an equivalence relation R on $\mathcal{M}_{X} \alpha \psi, \mathcal{H}(X, H; m_{X})$ as follows:

 $fRh \text{ if and only if } f(x) = h(x) \text{ for any } x \in H. \text{ Let } [f] \text{ be}$ the equivalence class of f. Let $H = \{f \mid f \in \mathcal{M}_X a \psi(\widetilde{\mathcal{H}})(X, H; m_X) \text{ and } f(x) = x \text{ for any } x \in H\}$. Then, $H = ker(r_H)^{\#}$ and this is normal subgroup of
$$\begin{split} &\mathcal{M}_{X} \alpha \psi \left(\widetilde{\mathcal{H}} \right) (X, \ H; \ m_{X}). & \text{The factor group of} \\ &\mathcal{M}_{X} \alpha \psi \left(\widetilde{\mathcal{H}} \right) (X, \ H; \ m_{X}) & \text{by} & H & \text{is} \\ &\mathcal{M}_{X} \alpha \psi \left(\widetilde{\mathcal{H}} \right) (X, \ H; \ m_{X}) \setminus H = \{ fH | f \in \mathcal{M}_{X} \alpha \psi \left(\widetilde{\mathcal{H}} \right) (X, \ H; \ m_{X}) \} \\ &, \text{ where } fH = \{ \mu(f, k) | \ k \in H \} = [f]. \end{split}$$

Since $(rH)^{\#}$ is onto by *Theorem 3.6*, then the relation between the groups $\mathcal{M}_{\mathbb{X}} \alpha \psi(\widetilde{\mathcal{H}})(H, H; m_{\mathbb{X}})$ is investigated as follows:

Theorem 3.7. If H is $\mathcal{M}_X \alpha \psi$ -clopen subset of (X, m_X) , then $\mathcal{M}_X \alpha \psi(\widetilde{\mathcal{H}})(H, m_X \setminus H)$ is isomorphic to the factor group $\mathcal{M}_X \alpha \psi(\widetilde{\mathcal{H}})(H, H; m_X) \setminus H$.

Proof. By Theorem, $(rH)^{\#}: \mathcal{M}_{X} \alpha \psi(\widetilde{\mathcal{H}})(H, H; m_{X}) \to \mathcal{M}_{X} \alpha \psi(\widetilde{\mathcal{H}})(H, m_{X} \setminus H)$ is an onto homomorphism. Thus, we have the required isomorphism, $\mathcal{M}_{Y} \alpha \psi(\widetilde{\mathcal{H}})(H, \tau \setminus H) \cong \mathcal{M}_{Y} \alpha \psi(\widetilde{\mathcal{H}})(H, H; m_{Y}) \setminus H.$

Theorem 3.8. If $\alpha: (X, m_X) \to (Y, m_Y)$ is a $\mathcal{M}_X \alpha \psi(\overline{\mathcal{H}})$ such that $\alpha(H) = K$, then there is an isomorphism, $\alpha^{\#}: \mathcal{M}_X \alpha \psi(\widetilde{\mathcal{H}})(H, H; m_X) \to \mathcal{M}_X \alpha \psi(\widetilde{\mathcal{H}})(H, H; m_X).$

Proof. The isomorphism $\alpha^{\#}$ is defined by $\alpha^{\#}(f) = \alpha \circ f \circ \alpha^{-1}$. Let $(X \setminus R, m_X \setminus R)$ be the quotient *m*-space of (X, m_X) by an equivalence relation *R* on *X* and let $\pi: (X, m_X) \to (X \setminus R, m_X \setminus R)$ be the canonical projection.

Definition 3.9. A space (X, m_X) is called $\mathcal{M}_X \alpha \psi$ -connected if X cannot be expressed as the disjoint union of two nonempty $\mathcal{M}_X \alpha \psi$ -closed sets.

Definition 3.10. A function $f:(X, m_X) \to (Y, m_Y)$ is called $\mathcal{M}_X \alpha \psi$ -closed if f(F) is $\mathcal{M}_X \alpha \psi$ -closed in (Y, m_Y) for every closed set F of (X, m_X) .

Definition 3.11. A space (X, m_X) is called $T^{\#}\mathcal{M}_X \alpha \psi$ -space if every $\mathcal{M}_X \alpha \psi$ -closed set is m_X -closed.

Theorem 3.12. Let F be a subset of $(X \setminus R, m_X \setminus R)$. If $\pi: (X, m_X) \to (X \setminus R, m_X \setminus R)$ is $\mathcal{M}_X \alpha \psi$ -closed function and $\pi^{-1}(F)$ is $\mathcal{M}_X \alpha \psi$ -closed in (X, m_X) , then F is $\mathcal{M}_X \alpha \psi$ -closed, where (X, m_X) is a $T^{\#} \mathcal{M}_X \alpha \psi$ -space.

Proof. Let $\pi^{-1}(F)$ is $\mathcal{M}_X \alpha \psi$ -closed in (X, m_X) . Then $\pi^{-1}(F)$ is closed in (X, m_X) , since (X, m_X) is $T^{\#}\mathcal{M}_X \alpha \psi$ -space. Then $\pi(\pi^{-1}(F)) = F$ is $\mathcal{M}_X \alpha \psi$ -closed in $(X \setminus R, m_X \setminus R)$, since π is a $\mathcal{M}_X \alpha \psi$ -closed map.

Theorem 3.13. If $\pi: (X, m_X) \to (X \setminus R, m_X \setminus R)$ is $\mathcal{M}_X \alpha \psi$ continuous and the subset F is $\mathcal{M}_X \alpha \psi$ -closed $(X \setminus R, m_X \setminus R)$, then $\pi^{-1}(F)$ is $\mathcal{M}_X \alpha \psi$ -closed in (X, m_X) .

Proof. Let F be a closed set in $(X \setminus R, m_X \setminus R)$. Then F is $\mathcal{M}_X \alpha \psi$ -closed in $(X \setminus R, m_X \setminus R)$. Since π is $\mathcal{M}_X \alpha \psi$ -continuous, Then $\pi^{-1}(F)$ is $\mathcal{M}_X \alpha \psi$ -closed in (X, m_X) .

Theorem 3.14. If the bijective map $\pi: (X, m_X) \to (X \setminus R, m_X \setminus R)$ is $\mathcal{M}_X \alpha \psi$ -continuous and (X, m_X) is $\mathcal{M}_X \alpha \psi$ -connected, then $(X \setminus R, m_X \setminus R)$ is $\mathcal{M}_X \alpha \psi$ -connected.

Proof. Suppose that $(X \setminus R, m_X \setminus R)$ is not $\mathcal{M}_X \alpha \psi$ connected. Therefore $X \setminus R = A \cup B$, where A and B are $\mathcal{M}_X \alpha \psi$ -closed set. Then $\pi^{-1}(A) \square$ and $\pi^{-1}(B)$ are $\mathcal{M}_X \alpha \psi$ closed in (X, m_X) such that $X = \pi^{-1}(A) \cup \pi^{-1}(B)$. Therefore (X, m_X) is not $\mathcal{M}_X \alpha \psi$ -connected. It is a contradiction. Therefore $(X \setminus R, m_X \setminus R)$ is $\mathcal{M}_X \alpha \psi$ connected.

REFERENCES

- [1] M. Alimohammady, M. Roohi. Linear minimal spaces, to appear.
- [2] M. Alimohammady, M. Roohi. Fixed Point in Minimal Spaces, Nonlinear Analysis: Modelling and Control, 2005, Vol. 10, No. 4, 305–314
- [3] Csaszar. Generalized topology: generalized continuity, Acta. Math. Hunger., 96, pp. 351–357, 2002.6. S.
- [4] R.Devi, K.Balachandran and H.Maki, Semi generalized homeomorphisms and generalized semi homeomorphisms in topological spaces, *Indian J. Pure. Appl. Math*, 26(3)(1995), 271-284.
- [5] S. Lugojan. Generalized Topology, Stud. Cerc. Math., 34, pp. 348 360, 1982.
- [6] H. Maki, J. Umehara, T. Noiri. Every topological space is pre T1/2, Mem. Fac. Sci. Kochi Univ. Ser. Math., pp. 33–42.
- [7] H. Maki, K. C.Rao, On generalizing semi-open sets and preopen sets, *Pure Appl Math Sci* 49(1999) pp.17-29.
- [8] T. Noiri. On Am-sets and related spaces, in: Proceedings of the 8th Meetings on Topolgical Spaces Theory and its Application, August 2003, pp. 31–41.
- [9] E. Ott, C. Grebogi, J.A. Jorke. Controlling Chaos, *Phys. Rev. Lett.*, 64, pp. 1196–1199, 1990.
- [10] M. Parimala, Upper and lower weakly m_x- αψ -continuous multifunctions, J. Appl.Computat Math 2012 1:2 pp. 1-4
- [11] V. Popa, T. Noiri. On *M*-continuous functions, Anal. Univ. "Dunarea Jos"-Galati, Ser, Mat. Fiz, Mec. Teor. Fasc. II, 18(23), pp. 31–41, 2000.
- [12] E.Rosas, N.Rajesh and C.Carpintero, Some new types of open sets and closed sets in minimal structure-I, *Int. Mat. Forum* 4(44)(2009), 2169-2184.
- [13] J. Ruan, Z. Huang. An improved estimation of the fixed point's neighbourhood in controlling discrete chaotic systems, *Commun. Nonlinear Sci. Numer. Simul.*, 3, pp. 193 197, 1998.