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Abstract - In this paper we deal with branching process in 
which each particle procedure offspring at the time of 
completion of its life-time L according to a probability 
generating functions. We obtain an integral equation for the 
joint generating function of the vector process and limiting 
distribution. 
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I.INTRODUCTION

Branching processes occur in the study of several physical 
and biological phenomena where each particle remains for 
some amount of time and then splits into several particles of 
same type. In physical science they are called reproductive 
processes. Two important factors which characterize each of 
these processes are life time and the number of off-spring of 
each self-branching particle. By considering various 
assumptions on the life time, branching processes have been 
classified into Galton-Waston branching processes, Markov 
branching processes and age-dependent branching processes 
and have been studied very extensively in the past Harris 
(1963), Srinivasan (1969), Mode (1971), Athreya and Ney 
(1972) and Assmussen and Hering (1983). Recently, Pakes 
(2000) prepared a report on biological applications of 
branching processes, which is wider in scope (it has a lot 
spatial branching and ecology. In markov branching 
processes and age-dependent branching processes which 
come under the category of continuous-time branching 
processes, there is no restriction on the time of splitting of 
each particle. Accordingly, the study of continuous-time 
branching processes with the above restriction is absolutely 
essential. In the present paper, we investigate a branching 
process which incorporates restricted random evolutions 
with branching process. Accordingly, the study of 
continuous-time branching processes with above restriction 
is absolutely essential. In this paper, we investigate a 
branching process which incorporates age restriction for 
branching, and derived associated tom stochastic integral. 
The organization of the chapter is as follows. In section 2, 
the restricted branching process is described. the joint 
moment generating function of the branching process and 
an associated stochastic integral is obtained in section 3. In 
section 4, explicit expressions for the mean of the branching 
process and the stochastic integrals are found. In section 5 

the limit distribution of Y(t) on the evolution of the 
stochastic integral is derived.  

II. RESTRICTED BRANCHING PROCESSES

We start with one particle at time 𝑡𝑡 = 0. The particle lives 
for a random length L of time and at the time of its death 
leaves a random number of identical off-springs provided  
𝑇𝑇1 < 𝐿𝐿 < 𝑇𝑇2 . Where 𝑇𝑇1 and 𝑇𝑇2 are positive constants. The 
particle Leaves no descendants if 𝐿𝐿 < 𝑇𝑇1 or 𝐿𝐿 > 𝑇𝑇2. The 
descendants behave independently and indentically to the 
ancestor. Let 𝐺𝐺(𝑡𝑡) be the distribution function of the life-
time and ℎ(𝑠𝑠) be the off-spring probability generating 
function of each particle. Let 𝑋𝑋(𝑡𝑡) be the number of 
particles present at ime t. Then, we call the stochastic 
process {𝑋𝑋(𝑡𝑡), 𝑡𝑡 ≥ 0} or simply 𝑋𝑋(𝑡𝑡) as restricted branching 
process. Firstly, if 𝑇𝑇1 = 0 and 𝑇𝑇2 = ∞, then the branching 
process 𝑋𝑋(𝑡𝑡)becomes the Bellmen-Harris branching process 
also called age-dependent branching process, see (1963). 
Secondly, if 𝑇𝑇1 = 0 , 𝑇𝑇2 = ∞, and 𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 𝑡𝑡 ≥ 0 
, 𝜆𝜆 > 0 then 𝑋𝑋(𝑡𝑡) becomes the Markov branching process. 

III. A STOCHASTIC INTEGRAL AND THE JOINT
M.G.F

We consider the restricted Markov branching process𝑋𝑋(𝑡𝑡), 
where 𝑋𝑋(0) = 1. Let 𝜔𝜔 be any element of the outcome 
space Ώ of 𝑋𝑋(𝑡𝑡). Then, for all 𝜔𝜔 except in a set of measure 
zero, the sample path 𝑋𝑋(𝑡𝑡,𝜔𝜔) is a step-function and hence 
𝑋𝑋(𝑡𝑡,𝜔𝜔)  is integrable over any finite interval of the time-
axis. Accordingly, the integral ∫ 𝑋𝑋(𝑢𝑢)𝑑𝑑𝑢𝑢𝜆𝜆

0   is called a 
stochastic integral exists almost surely and defines a random 
variable 𝑌𝑌(𝑡𝑡) for each 𝑡𝑡 > 0. The stochastic process 
{𝑌𝑌(𝑡𝑡), 𝑡𝑡 > 0} or simply 𝑌𝑌(𝑡𝑡) has been studied under 
different context in literature (see Puri(1966a,b,1969), 
Jagers (1967), Pakes (1975), Srinivasan and Udayabaskaran 
(1982), and Udayabaskaran and Sudalaiyandi(1986) ).  
We consider the vector process   �𝑋𝑋(𝑡𝑡),𝑌𝑌(𝑡𝑡)� and define its 
joint-moment generating function by  
𝐺𝐺(𝑠𝑠1, 𝑠𝑠2, 𝑡𝑡) = 𝐸𝐸�𝑠𝑠1

𝑋𝑋(𝜆𝜆)𝑒𝑒−𝑠𝑠2𝑌𝑌(𝜆𝜆)| 𝑋𝑋(0) = 1�
Considering the three probabilities 0 < 𝑡𝑡 <  𝑇𝑇1 ,  𝑇𝑇1 < 𝑡𝑡 <
 𝑇𝑇2 and 𝑡𝑡 > 𝑇𝑇2, observing that the ancestor existing at time 0 
ends its life either before or after t and using renewal type 
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arguments, we obtain the following integral equation for 𝐺𝐺(𝑠𝑠1, 𝑠𝑠2, 𝑡𝑡): 

𝐺𝐺(𝑠𝑠1, 𝑠𝑠2, 𝑡𝑡) = 𝑠𝑠1𝑒𝑒−(𝑠𝑠2+𝜆𝜆)𝜆𝜆 + 𝜆𝜆�𝑒𝑒−(𝑠𝑠2+𝜆𝜆)𝜏𝜏

𝜆𝜆

0

𝑑𝑑𝑑𝑑 + 𝜆𝜆 �𝑒𝑒−(𝑠𝑠2+𝜆𝜆)𝜏𝜏ℎ�𝐺𝐺(𝑠𝑠1, 𝑠𝑠2, 𝑡𝑡 − 𝑑𝑑)�
𝜆𝜆

 𝑇𝑇1

𝑑𝑑𝑑𝑑,  𝑇𝑇1 < 𝑡𝑡 <  𝑇𝑇2    (3.1) 

Using 𝐺𝐺(𝑠𝑠1, 𝑠𝑠2, 𝑡𝑡), we can obtain the moment the structure of 𝑋𝑋(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑌𝑌(𝑡𝑡). In the next section, we obtain explicit 
expressions for  𝐸𝐸[𝑋𝑋(𝑡𝑡)] 𝑎𝑎𝑎𝑎𝑑𝑑 𝐸𝐸[𝑌𝑌(𝑡𝑡)].  

IV.THE MEAN OF  𝑿𝑿(𝒕𝒕) 𝒂𝒂𝒂𝒂𝒂𝒂 𝒀𝒀(𝒕𝒕)

We use the following notation for the means: 
𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝐸𝐸{𝑋𝑋(𝑡𝑡)|𝑋𝑋(0) = 1},  
𝑀𝑀𝑌𝑌(𝑡𝑡) = 𝐸𝐸{𝑌𝑌(𝑡𝑡)|𝑌𝑌(0) = 1} 
We shall first obtain 𝑀𝑀𝑋𝑋(𝑡𝑡). For this, we differentiate (1) with respect to 𝑠𝑠1 at (𝑠𝑠1 = 1, 𝑠𝑠2 = 0) and we get 

𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝜆𝜆 + 𝜆𝜆𝜆𝜆 �𝑒𝑒−𝜆𝜆𝜏𝜏 

𝜆𝜆

 𝑇𝑇1

𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑) 𝑑𝑑𝑑𝑑,  𝑇𝑇1 < 𝑡𝑡 <  𝑇𝑇2  (4.1) 

Where we have put 𝜆𝜆 = ℎ′(1). the constant m represents the expected number of progeny of each individual. 
The equation (2.1) can be solved by adopting an iterative procedure as explained below: 
From the equation (2.1), we have explicitly  
𝑀𝑀𝑋𝑋(𝑡𝑡) =  𝑒𝑒−𝜆𝜆𝜆𝜆 , 0 < 𝑡𝑡 <  𝑇𝑇1                                                                               (4.2) 
To obtain explicit solution for  𝑀𝑀𝑋𝑋(𝑡𝑡) in the other cases  𝑇𝑇1 < 𝑡𝑡 <  𝑇𝑇2  and 𝑡𝑡 > 𝑇𝑇2, we assume 
𝑇𝑇2 =  𝜐𝜐𝑇𝑇1, where 𝜐𝜐 is a positive integer  ≥ 2. 

Case: (i).  𝑇𝑇1 < 𝑡𝑡 ≤ 𝜐𝜐𝑇𝑇1  
We divide the interval  (𝑇𝑇1, 𝜐𝜐𝑇𝑇1 ] into the subintervals  (𝑇𝑇1, 2𝑇𝑇1 ], … … ,  ((𝜐𝜐 − 1)𝑇𝑇1, 𝜐𝜐𝑇𝑇1 ] and obtain 𝑀𝑀𝑋𝑋(𝑡𝑡) successively in 
each of them. 

Sub case:  𝑻𝑻𝟏𝟏 < 𝑡𝑡 ≤ 𝟐𝟐𝑻𝑻𝟏𝟏 
Her, we note that 0 < 𝑡𝑡 −  𝑇𝑇1 ≤ 𝑇𝑇1 and hence by (2.2), we have 

�𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑)
𝜆𝜆

 𝑇𝑇1

𝑑𝑑𝑑𝑑 = � 𝑒𝑒−𝜆𝜆(𝜆𝜆−𝜏𝜏) 𝑀𝑀𝑋𝑋(𝑑𝑑)𝑑𝑑𝑑𝑑 =  � 𝑒𝑒−𝜆𝜆(𝜆𝜆−𝜏𝜏)𝑒𝑒−𝜆𝜆𝜆𝜆  𝑑𝑑𝜐𝜐 

𝜆𝜆−𝑇𝑇1

0

  (4.3) 

𝜆𝜆−𝑇𝑇1

0

Sub case: 𝒍𝒍 = 𝝂𝝂 
Here, we clearly have  𝜈𝜈𝑇𝑇1 < 𝑡𝑡 ≤ (𝜈𝜈 + 1)𝑇𝑇1  so that (𝜈𝜈 − 1)𝑇𝑇1 < 𝑡𝑡 − 𝑇𝑇1 ≤ 𝜈𝜈𝑇𝑇1. We split the interval  (𝑇𝑇1, 𝜐𝜐𝑇𝑇1 ] into 
subintervals  

 ( 𝑇𝑇1, 𝑡𝑡 − (𝜈𝜈 − 1)𝑇𝑇1 ], (𝑡𝑡 − (𝜈𝜈 − 1)  𝑇𝑇1, 𝑡𝑡 − (𝜈𝜈 − 2)  𝑇𝑇1], … , (𝑡𝑡 − 2  𝑇𝑇1, 𝑡𝑡 −   𝑇𝑇1], (𝑡𝑡 −   𝑇𝑇1, 𝜈𝜈 𝑇𝑇1]    (4.4) 
So that 

� 𝑒𝑒−𝜆𝜆𝜆𝜆 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑)

𝜈𝜈𝑇𝑇1

 𝑇𝑇1

𝑑𝑑𝑑𝑑 = � 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑)𝑑𝑑𝑑𝑑

𝜆𝜆−(𝜈𝜈−1)𝜈𝜈 𝑇𝑇1

𝑇𝑇1

 

 =  � 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑) 𝑑𝑑𝑑𝑑 

𝜆𝜆−(𝜈𝜈−2)𝜈𝜈 𝑇𝑇1

𝜆𝜆−(𝜈𝜈−1)𝜈𝜈 𝑇𝑇1
 + … … … … … … … … … … … … 

 + � 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑) 𝑑𝑑𝑑𝑑 

𝜆𝜆− 𝑇𝑇1

𝜆𝜆− 𝑇𝑇1

+ � 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑) 𝑑𝑑𝑑𝑑 

𝜈𝜈𝑇𝑇1

𝜆𝜆− 𝑇𝑇1

 (4.5) 

But, we have 

� 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑)𝑑𝑑𝑑𝑑

𝜆𝜆−(𝜈𝜈−1)𝑇𝑇1

𝑇𝑇1

=  � 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑒𝑒−𝜆𝜆(𝜆𝜆−𝜏𝜏) �
(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!

𝜐𝜐−1

𝑗𝑗=0

(𝑡𝑡 − 𝑑𝑑 − 𝑗𝑗𝑇𝑇1)𝑗𝑗𝑑𝑑𝑑𝑑

𝜆𝜆−(𝜈𝜈−1) 𝑇𝑇1

𝑇𝑇1
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 =   𝑒𝑒−𝜆𝜆𝜏𝜏 �
(𝜆𝜆𝜆𝜆)𝑗𝑗

(𝑗𝑗 + 1)!

𝜐𝜐−1

𝑗𝑗=0

[(𝑡𝑡 − (𝑗𝑗 + 1)𝑇𝑇1)𝑗𝑗+1 −  ((𝜈𝜈 − 1 − 𝑗𝑗)𝑇𝑇1)𝑗𝑗+1]; 

 � 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑) 𝑑𝑑𝑑𝑑 

𝜆𝜆−(𝜈𝜈−2) 𝑇𝑇1

𝜆𝜆−(𝜈𝜈−1) 𝑇𝑇1

=  � 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑒𝑒−𝜆𝜆(𝜆𝜆−𝜏𝜏) �
(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!

𝜐𝜐−2

𝑗𝑗=0

(𝑡𝑡 − 𝑑𝑑 − 𝑗𝑗𝑇𝑇1)𝑗𝑗𝑑𝑑𝑑𝑑 

𝜆𝜆−(𝜈𝜈−2)𝑇𝑇1

𝜆𝜆−(𝜈𝜈−1)𝑇𝑇1

 = 𝑒𝑒−𝜆𝜆𝜏𝜏 �
(𝜆𝜆𝜆𝜆)𝑗𝑗

(𝑗𝑗 + 1)!

𝜐𝜐−2

𝑗𝑗=0

��(𝜈𝜈 − 1 − 𝑗𝑗)𝑇𝑇1�
𝑗𝑗+1 − ((𝜈𝜈 − 2 − 𝑗𝑗)𝑇𝑇1)𝑗𝑗+1� ;

� 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑) 𝑑𝑑𝑑𝑑 =    � 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑒𝑒−𝜆𝜆(𝜆𝜆−𝜏𝜏)   �
(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!

1

𝑗𝑗=0

(𝑡𝑡 − 𝑑𝑑 − 𝑗𝑗𝑇𝑇1)𝑗𝑗𝑑𝑑𝑑𝑑 

𝜆𝜆−𝑇𝑇1

𝜆𝜆−2𝑇𝑇1

𝜆𝜆− 𝑇𝑇1

𝜆𝜆−2𝑇𝑇1

 = 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑒𝑒−𝜆𝜆(𝜆𝜆−𝜏𝜏)   �
(𝜆𝜆𝜆𝜆)𝑗𝑗

(𝑗𝑗 + 1)!

1

𝑗𝑗=0

[((2 − 𝑗𝑗)𝑇𝑇1)𝑗𝑗+1 − ((1 − 𝑗𝑗)𝑇𝑇1)𝑗𝑗+1] 

� 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑) 𝑑𝑑𝑑𝑑 =    � 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑒𝑒−𝜆𝜆(𝜆𝜆−𝜏𝜏)  𝑑𝑑𝑑𝑑 =  𝑒𝑒−𝜆𝜆𝜏𝜏 {(𝜈𝜈 + 1)𝑇𝑇1 − 𝑡𝑡} 

𝜈𝜈𝑇𝑇1

𝜆𝜆−𝑇𝑇1

𝜈𝜈𝑇𝑇1

𝜆𝜆−𝑇𝑇1
And hence on addition of the above equations and submitting in (4.5), we get 

𝑀𝑀𝑋𝑋(𝑡𝑡) =   𝑒𝑒−𝜆𝜆𝜏𝜏 ��
(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!
 (𝑡𝑡 − 𝑗𝑗𝑇𝑇1)𝑗𝑗 − 𝜆𝜆𝜆𝜆(𝑡𝑡 − 𝜈𝜈𝑇𝑇1)

𝜈𝜈

𝑗𝑗=0

� , 𝑣𝑣𝑇𝑇1 < 𝑡𝑡 ≤ (𝜐𝜐 + 1)𝑇𝑇1  (4.6) 

Sub case: 𝒍𝒍 = 𝝂𝝂 + 𝟏𝟏 
Here, we clearly have (𝜈𝜈 + 1)𝑇𝑇1 < 𝑡𝑡 ≤ (𝜐𝜐 + 2)𝑇𝑇1 so that (𝜈𝜈 − 1)𝑇𝑇1 < 𝑡𝑡 − 2𝑇𝑇1 ≤  𝜈𝜈𝑇𝑇1. We split the interval (𝑇𝑇1 , 𝜈𝜈𝑇𝑇1] into 
subintervals. 

(𝑇𝑇1 , 𝑡𝑡 − 𝜈𝜈𝑇𝑇1], (𝑡𝑡 − 𝜈𝜈𝑇𝑇1, 𝑡𝑡 − (𝜈𝜈 − 1)𝑇𝑇1], … … (𝑡𝑡 − 3𝑇𝑇1, 𝑡𝑡 − 2𝑇𝑇1, 𝜈𝜈𝑇𝑇1] 
And write 

� 𝑒𝑒−𝜆𝜆𝜏𝜏 𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑) 𝑑𝑑𝑑𝑑 =    � 𝑒𝑒−𝜆𝜆𝜏𝜏  𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑)𝑑𝑑𝑑𝑑 + � 𝑒𝑒−𝜆𝜆𝜏𝜏  𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑)𝑑𝑑𝑑𝑑

𝜆𝜆−(𝜈𝜈−1)𝑇𝑇1

𝜆𝜆−𝜈𝜈𝑇𝑇1

 

𝜆𝜆−𝜈𝜈𝑇𝑇1

𝑇𝑇1

+ ⋯… .

𝜈𝜈𝑇𝑇1

𝑇𝑇1

 

+  � 𝑒𝑒−𝜆𝜆𝜏𝜏  𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑)𝑑𝑑𝑑𝑑 + � 𝑒𝑒−𝜆𝜆𝜏𝜏  𝑀𝑀𝑋𝑋(𝑡𝑡 − 𝑑𝑑)𝑑𝑑𝑑𝑑  (4.7)

𝜈𝜈𝑇𝑇1

𝜆𝜆−2𝑇𝑇1

𝜆𝜆−2𝑇𝑇1

𝜆𝜆−3𝑇𝑇1

 

Using (4.4) and (4.6) in (4.7) and then substituting in (4.5), we get 

𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝜏𝜏 ��
[𝑣𝑣+1]

𝑘𝑘=0

(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!
 (𝑡𝑡 − 𝑗𝑗𝑇𝑇1)𝑗𝑗 − 𝜆𝜆𝜆𝜆(𝑡𝑡 − 𝑣𝑣𝑇𝑇1) − (𝜆𝜆𝜆𝜆)2(𝑡𝑡 − (𝑣𝑣 + 1)𝑇𝑇1)2� 

Where (𝑣𝑣 + 1)𝑇𝑇1 < 𝑡𝑡 ≤ (𝑣𝑣 + 2)𝑇𝑇1. Proceeding inductively, we obtain 

𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝜏𝜏 �(−1)𝑘𝑘
�𝜆𝜆 𝑣𝑣� �

𝑘𝑘=0

(𝜆𝜆𝜆𝜆)𝑘𝑘

𝑘𝑘!
�
𝑙𝑙−𝑣𝑣𝜆𝜆

𝑗𝑗=0

(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!
(𝑡𝑡 − (𝑗𝑗 + 𝑣𝑣𝑘𝑘)𝑇𝑇1)𝑗𝑗+𝑘𝑘   (4.8) 

Where (𝑣𝑣 + 𝑘𝑘)𝑇𝑇1 < 𝑡𝑡 ≤ (𝑣𝑣 + 𝑘𝑘 + 1)𝑇𝑇1, 𝑘𝑘 = 0,1,2, … The equations (4.2) , (4.4) and (4.8) can be put together and we have 

𝑀𝑀𝑋𝑋(𝑡𝑡) =  𝑒𝑒−𝜆𝜆𝜆𝜆 �(−1)𝑘𝑘 

[𝑙𝑙 𝑣𝑣� ]

𝑘𝑘=0

(𝜆𝜆𝜆𝜆)𝑘𝑘

𝑘𝑘!
� (𝑡𝑡 − (𝑗𝑗 + 𝑣𝑣𝑘𝑘)𝑇𝑇1)𝑗𝑗+𝑘𝑘
𝑙𝑙−𝑣𝑣𝑘𝑘

𝑗𝑗=0

  (4.9) 

Where 𝑙𝑙𝑇𝑇1 < 𝑡𝑡 ≤ (𝑙𝑙 + 1)𝑇𝑇1, 𝑙𝑙 = 0,1,2 …. Next, we proceed to obtain 𝑀𝑀𝑌𝑌(𝑡𝑡). Using the path structure of X(𝑡𝑡). We have 

𝑀𝑀𝑌𝑌(𝑡𝑡) =  �𝑀𝑀𝑋𝑋(𝑑𝑑)
𝜆𝜆

0

𝑑𝑑𝑑𝑑  (4.10) 

When 0 < 𝑡𝑡 ≤ 𝑇𝑇1, we have 𝑀𝑀𝑋𝑋(𝑡𝑡) =  𝑒𝑒−𝜆𝜆𝜆𝜆 and so by (4.10), we get 

𝑀𝑀𝑌𝑌(𝑡𝑡) =
1 − 𝑒𝑒−𝜆𝜆𝜆𝜆

𝜆𝜆
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When 𝑙𝑙𝑇𝑇1 < 𝑡𝑡 ≤ (𝑙𝑙 + 1)𝑇𝑇1, 𝑙𝑙 = 0,1,2 …., we write (2.10) ion the following manner 

𝑀𝑀𝑌𝑌(𝑡𝑡) = � � 𝑀𝑀𝑋𝑋(𝑑𝑑)𝑑𝑑𝑑𝑑

𝑛𝑛𝑇𝑇1

(𝑛𝑛−1)𝑇𝑇1

𝑙𝑙

𝑛𝑛=1

+ �𝑀𝑀𝑋𝑋(𝑑𝑑)𝑑𝑑𝑑𝑑
𝜆𝜆

𝑙𝑙𝑇𝑇1

  (4.11) 

Substituting (4.9) into (4.11), we obtain 

𝑀𝑀𝑌𝑌(𝑡𝑡) = � � (−1)𝑘𝑘
�(𝑛𝑛−1)

𝑣𝑣� �

𝑘𝑘=0

𝑙𝑙

𝑛𝑛=1

(𝜆𝜆𝜆𝜆)𝑘𝑘

𝑘𝑘!
� �

(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!
 𝑈𝑈�(𝑎𝑎 − 1)𝑇𝑇1, (𝑗𝑗 + 𝑣𝑣𝑘𝑘)𝑇𝑇1, 𝑗𝑗 + 𝑘𝑘� − 𝑈𝑈(𝑎𝑎𝑇𝑇1, (𝑗𝑗 + 𝑣𝑣𝑘𝑘)𝑇𝑇1, 𝑗𝑗 + 𝑘𝑘)

(𝑛𝑛−1−𝑣𝑣𝑘𝑘)

𝑗𝑗=0

�

+ � (−1)𝑘𝑘
�(𝑛𝑛−1)

𝑣𝑣� �

𝑘𝑘=0

(𝜆𝜆𝜆𝜆)𝑘𝑘

𝑘𝑘!
�

(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!
 

(𝑙𝑙−𝑣𝑣𝑘𝑘)

𝑗𝑗=0

{𝑈𝑈(𝑙𝑙𝑇𝑇1, (𝑗𝑗 + 𝑣𝑣𝑘𝑘)𝑇𝑇1, 𝑗𝑗 + 𝑘𝑘) − 𝑈𝑈(𝑡𝑡, (𝑗𝑗 + 𝑣𝑣𝑘𝑘)𝑇𝑇1, 𝑗𝑗

+ 𝑘𝑘}        (4.12) 
Where 

𝑈𝑈(𝑠𝑠,𝜃𝜃,𝑎𝑎) =
𝑒𝑒−𝜆𝜆𝑠𝑠𝑎𝑎!
𝜆𝜆𝑛𝑛+1

�1 + �
(𝜆𝜆(𝑠𝑠 − 𝜃𝜃))𝑖𝑖

𝑖𝑖!

𝑛𝑛

𝑖𝑖=1

� 

let 𝑣𝑣 → ∞ in (4.9), we get 

𝑀𝑀𝑋𝑋(𝑡𝑡) =  𝑒𝑒−𝜆𝜆𝜆𝜆�
(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!
 (𝑡𝑡 − 𝑗𝑗𝑇𝑇1)𝑗𝑗

𝜆𝜆

𝑗𝑗=0

 

A result of parthasarathy  (1979). Likewise, let 𝑣𝑣 → ∞ in(4.12), we obtain 

𝑀𝑀𝑌𝑌(𝑡𝑡) =  �
𝜆𝜆𝑗𝑗

𝜆𝜆
 �𝑒𝑒−𝜆𝜆𝑗𝑗𝑇𝑇1 − 𝑒𝑒−𝜆𝜆𝜆𝜆�

�𝜆𝜆(𝑡𝑡 − 𝑗𝑗𝑇𝑇1)�𝑖𝑖

𝑖𝑖!

𝑗𝑗

𝑖𝑖=0

� (𝑡𝑡 − 𝑗𝑗𝑇𝑇1)𝑗𝑗
𝜆𝜆

𝑗𝑗=0

, 𝑙𝑙𝑇𝑇1 < 𝑡𝑡 ≤ (𝑙𝑙 + 1)𝑇𝑇1, 

 𝑙𝑙 = 1,2 … 
a result of Udayabaskaran and Sudalaiyandi (1986). 

V. THE LIMIT DISTRIBUTION OF 𝒀𝒀(𝒕𝒕) 

We assume the 𝜆𝜆 ≤ 𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿). Then, as 𝑡𝑡 → ∞, 𝑀𝑀𝑋𝑋(𝑡𝑡) → 0, and so 𝑋𝑋(𝑡𝑡) → 0 almost surely. Consequently, the integral 
 ∫ 𝑋𝑋(𝑑𝑑)∞
0 𝑑𝑑𝑑𝑑 exists almost surely and 𝑌𝑌(𝑡𝑡) converges to the random variable 𝑌𝑌 = ∫ 𝑋𝑋(𝑑𝑑)𝑑𝑑𝑑𝑑∞

0 . In order to obtain explicit 
expression for the probability density function of Y, we assume further that 

𝑅𝑅𝑒𝑒(𝑟𝑟2) < 1 < 𝑅𝑅𝑒𝑒(𝑟𝑟1), 
we have 

𝜙𝜙(𝑠𝑠) =
1

2𝜆𝜆
�𝑠𝑠 + 𝜆𝜆 + 𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿) − �(𝑠𝑠 + 𝜆𝜆 + 𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿))2 − 4𝜆𝜆(𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿))�       (5.1) 

Denoting the p.d.f of Y by 𝑓𝑓(𝑦𝑦), we note that, 

𝜙𝜙(𝑠𝑠) = � 𝑒𝑒−𝑠𝑠𝑠𝑠𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦
∞

0

 

that is, 𝜙𝜙(𝑠𝑠)is the laplace transform of 𝑓𝑓(𝑦𝑦), and so inversion of 𝜙𝜙(𝑠𝑠) yields  𝑓𝑓(𝑦𝑦). To do 
the inversion, we expand (5.1) as we given below 

𝜙𝜙(𝑠𝑠) =
1

2𝜆𝜆
�𝑠𝑠 + 𝜆𝜆 + 𝜃𝜃 − (𝑠𝑠 + 𝜆𝜆 + 𝜃𝜃)�1 −

4𝜆𝜆𝜃𝜃
(𝑠𝑠 + 𝜆𝜆 + 𝜃𝜃)2

�   (5.2 ) 

Where 𝜃𝜃 = 𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿). Using Taylor’s expansion in (5.2 ), we have 

𝜙𝜙(𝑠𝑠) =
1
𝜆𝜆
�

(2𝑟𝑟)!
𝑟𝑟! (𝑟𝑟 + 1)!

∞

𝑟𝑟=0

(𝜆𝜆𝜃𝜃)𝑟𝑟+1

(𝑠𝑠 + 𝜆𝜆 + 𝜃𝜃)2𝑟𝑟+1
 (5.3) 

Now inverting (5.3 ), we have explicitly 

𝑓𝑓(𝑦𝑦) = (𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿))𝑒𝑒−�𝜆𝜆+𝜇𝜇+𝛽𝛽(1−𝛿𝛿)�𝑠𝑠�
(𝜆𝜆(𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿)𝑦𝑦2)𝑟𝑟

𝑟𝑟! (𝑟𝑟 + 1)!

∞

𝑟𝑟=0
Which may be equalently expressed in terms of 𝑙𝑙1 bessel function as 

𝑓𝑓(𝑦𝑦) = 𝜃𝜃𝑒𝑒−(𝜆𝜆+𝜃𝜃)𝑠𝑠 1
𝑦𝑦√𝜆𝜆𝜃𝜃

𝑙𝑙1�2𝑦𝑦√𝜆𝜆𝜃𝜃�(0 ≤ 𝑦𝑦 < ∞) 
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The first two moments of Y are given by 

𝐸𝐸(𝑌𝑌) = −
𝑑𝑑
𝑑𝑑𝑠𝑠

{𝜙𝜙(𝑠𝑠)}𝑠𝑠=0 =  
1

𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿) − 𝜆𝜆
 (5.4) 

𝐸𝐸(𝑌𝑌2) = −
𝑑𝑑2

𝑑𝑑𝑠𝑠2
{𝜙𝜙(𝑠𝑠)}𝑠𝑠=0 =  

2(𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿))
(𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿) − 𝜆𝜆)3

 

and hence the variance of Y is given by 

𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) =
𝜆𝜆 + 𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿))

(𝜇𝜇 + 𝛽𝛽(1 − 𝛿𝛿) − 𝜆𝜆)3
 (5.5) 

Setting 𝛽𝛽 = 0 in (5.4 ) and (5.5 )  ,  
we recover the results of Puri(1966) 

𝐸𝐸(𝑌𝑌) =
1

𝜇𝜇 − 𝜆𝜆

𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) =
𝜇𝜇 + 𝜆𝜆

(𝜇𝜇 − 𝜆𝜆)3 

VI.CONCLUSION

In this paper, it was shown that if 𝑇𝑇1 = 0 and 𝑇𝑇2 = ∞, the 
branching process 𝑋𝑋(𝑡𝑡) becomes age dependent can be 
described by Markov-modulated branching processes with 
p.g.f . when  𝑇𝑇1 < 𝑡𝑡 <  𝑇𝑇2, then 𝑋𝑋(𝑡𝑡) becomes the modified 
Markov branching processes. We can branch out to when 
𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 and 𝑋𝑋(𝑡𝑡) as the restricted branching 
process. Finally, we note that other statistically relevant 
quantities such as expectations of particle restricted 

moments can be computed using similar generating function 
techniques applies analogously when sparsity is present. 
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