First-Principles Study of Dielectric Constant and Polarizability in Polydiacetylene Crystal

Authors

  • H. S. Omkar Department of Mechanical Engineering, RajaRajeswari College of Engineering, Kumbalagodu, Bengaluru, Karnataka, India
  • H. R. Sreepad P. G. Department of Physics, Government College (Autonomous), Mandya, Karnataka, India

DOI:

https://doi.org/10.51983/ajsat-2018.7.1.1023

Keywords:

Polydiacetylene, Dielectric Constant, Electronic Density of States, First-principles Calculations, Polarizability, Chemical Engineering

Abstract

First principles calculations based on Density Functional Theory have been done on Polydiacetylene. Its triclinic unit cell has been simulated. Band gap in case of this material comes out to be 0.75eV. This value is in the range exhibited by semiconducting materials. Dielectric constant and Polarizability of the material have been computed. The value of dielectric constant comes out to be 50.6, 59.6 and 44.6 along X, Y and Z axes respectively and its average value comes out to be 51.6. Polarizability comes out to be 33.7 (Å)3, 34 (Å)3 and 33.4 (Å)3 along X, Y and Z axes respectively with an average value of 33.7 (Å)3.

References

H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-Zone Integrations," Phys. Rev. B, vol. 13, pp. 5188-5192, 1976.

C. Galiotis, R. T. Read, P. H. J. Yeung, R. J. Young, I. F. Chalmers, and D. Bloor, "Mechanical Properties of Isotropic Pitch-Based Carbon Fibers," J. Polym. Sci. Polym. Phys. Ed., vol. 22, pp. 1589–1606, 1984.

D. M. Krol and M. Thakur, "Effect of Hydrogen Annealing on the Properties of Silicon Nanocrystals," Appl. Phys. Lett., vol. 56, p. 1406, 1990. [Online]. Available: https://doi.org/10.1063/1.102482.

D. Vanderbilt, "Soft Self-Consistent Pseudopotentials in Generalized Eigenvalue Formalism," Phys. Rev. B, vol. 41, pp. 7892–7895, 1990.

G. Weiser, "Comment on 'Deep Defect Levels in Crystals'," Phys. Rev. B, vol. 45, p. 14076, 1992.

J. L. Foley, L. Li, D. J. Sandman, M. J. Vela, B. M. Foxman, R. Albro, and C. J. Eckhardt, "Structural and Photophysical Properties of Phenanthroline-Based Mononuclear and Dinuclear Platinum(II) Complexes," J. Am. Chem. Soc., vol. 121, no. 31, pp. 7262–7263, 1999.

S. L. Weiser, "New Insight into Electronic Properties of Silicon Nanowires," Chem. Phys. Lett., vol. 64, no. 2, pp. 396-400, 1979.

A. Kokalj, "XCrySDen—A New Program for Displaying Crystalline Structures and Electron Densities," Comp. Mater. Sci., vol. 28, pp. 155-168, 2003. [Online]. Available: http://www.xcrysden.org/.

N. Aleshin, J. Y. Lee, S. W. Chu, S. W. Lee, B. Kim, S. J. Ahn, and Y. W. Park, "Effect of Annealing Temperature on the Properties of Aluminum-Doped Zinc Oxide Films Prepared by Atomic Layer Deposition," Phys. Rev. B, vol. 69, p. 214203, 2004.

C. J. Brinker, Z. Yang, and Y. Lu, "Formation and Structural Properties of Mesoporous Silica Films Prepared at the Air–Liquid Interface," J. Am. Chem. Soc., vol. 127, pp. 12782-12783, 2005.

S. O. Kasap and P. Capper, Springer Handbook of Electronic and Photonic Materials. Springer, 2006, vol. 54, pp. 327. ISBN 0-387-26059-5.

H. R. Sreepad, K. P. S. S. Hembram, and U. V. Waghmare, "First-Principles Study of the Electronic and Dielectric Properties of Polyoxymethylene," AIP Conf. Proc., vol. 1349, pp. 871-872, 2011.

M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulas, "Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients," Rev. Mod. Phys., vol. 64, no. 4, pp. 1045-1097, 1992.

H. R. Sreepad, H. R. Ravi, K. Ahmed, and U. V. Waghmare, "Radiation-Induced Changes in Electronic and Dielectric Properties of Polyoxymethylene," AIP Conf. Proc., vol. 1447, no. 1, pp. 793-794, 2013.

H. R. Sreepad, "First-Principles Study of Electronic and Dielectric Properties of 3-Methyl-1,5-Diphenyl-4,5-Dihydro-1H-Pyrazole," Chem. Technol.: An Indian J., vol. 11, no. 4, pp. 133-137, 2016.

H. R. Sreepad, "First-Principles Study of Electronic and Dielectric Properties of 2-Azacycloheptanoneazine," Organic Chem.: An Indian J., vol. 12, no. 1, pp. 1-5, 2016.

H. R. Sreepad, "Structure Simulation and Study of Electronic and Dielectric Properties of Two Derivatives of Benzamide," Mol. Cryst. Liq. Cryst., vol. 625, no. 1, pp. 195-201, 2016.

H. R. Sreepad, "Structure Simulation and Study of Electronic and Dielectric Properties of Two Derivatives of Benzamide," Mol. Cryst. Liq. Cryst., vol. 634, pp. 91-96.

H. Peng, J. Tang, J. Pang, D. Chen, L. Yang, H. S. Ashbaugh, C. J. Brinker, Z. Yang, and Y. Lu, "Formation and Structural Properties of Mesoporous Silica Films Prepared at the Air–Liquid Interface," J. Am. Chem. Soc., vol. 127, pp. 12782-12783, 2005.

"Molecular Modelling," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Molecular_modelling.

S. Baroni, S. A. Dal Corso, P. DeGironcoli, and Gianozzi, [Online]. Available: http://www.pwscf.org.

J. P. Perdew and A. Zunger, "Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems," Phys. Rev. B, vol. 23, pp. 5048-5079, 1981.

M. A. Methfessel and H. J. Monkhorst, "Special Points for Brillouin-Zone Integrations," Phys. Rev. B, vol. 40, pp. 3616–3621, 1989.

"Avogadro: An Open-Source Molecular Builder and Visualization Tool," [Online]. Available: http://avogadro.openmolecules.net/wiki/.

"Ioffe Database," [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semicond/.

Downloads

Published

25-03-2018

How to Cite

Omkar, H. S., & Sreepad, H. R. (2018). First-Principles Study of Dielectric Constant and Polarizability in Polydiacetylene Crystal. Asian Journal of Science and Applied Technology, 7(1), 20–22. https://doi.org/10.51983/ajsat-2018.7.1.1023