First-Principles Study of Electronic and Dielectric Properties in Lanthanum Manganate
DOI:
https://doi.org/10.51983/ajsat-2019.8.1.1040Keywords:
Lanthanum Manganate, Dielectric Constant, Electronic Density of States, First-Principles Calculations, Polarizability, Phonon ModesAbstract
First-principles calculations based on Density Functional Theory have been done on Lanthanum manganate. Its orthorhombic unit cell has been simulated. Electronic density of states has been computed and it shows that the material shows the nature of semiconducting material with a band gap of 1.38eV. Dielectric constant and Polarizability of the material have been computed. The value of dielectric constant comes out to be 47.3, 13.3 and 15.2 along X, Y and Z axes respectively with an average value of 25.3. The polarizability values are found to be 55.1(Å)3, 47.2(Å)3 and 48.5 (Å)3 along X, Y and Z axes respectively with an average value of 50.3(Å)3. Phonon modes at gamma point in the material range from 0 cm-1 to 885 cm-1.
References
S. Satpathy, Zoran S. Popovic, and Filip R. Vukajlovic, “Electronic Structure of the Perovskite Oxides: La1−xCaxMnO3”, Physical Review Letters, vol. 76, pp. 960–963, 1996. doi:10.1103/PhysRevLett.76.960.
E. Dagotto, “Nanoscale Phase Separation and Colossal Magnetoresistance”, Springer Series in Solid-State Sciences, 2003.
R. Von Helmolt et al., “Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films”, Phys. Rev. Lett., vol. 71, pp. 2331-2333, 1993.
P. Schiffer et al., “Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1−xCaxMnO3”, Phys. Rev. Lett., vol. 75, no. 18, pp. 3336-3339, 1995.
C. N. R. Rao, “Novel materials, materials design and synthetic strategies: recent advances and new directions”, J. Mater. Chem., vol. 9, no. 1, pp. 1-14, 1999.
S. Jin et al., “Thousand fold change in resistivity in magnetoresistive la-ca-mn-o films”, Science, vol. 264, pp. 413-415, 1994.
K. Petrov et al., “Enhanced magnetoresistance in sintered granular manganite/insulator systems”, Appl. Phys. Lett., vol. 75, pp. 995-997, 1999.
J. Z. Sun et al., “Magnetotransport in doped manganate perovskites”, IBM J. Res. Dev., vol. 42, pp. 89-102, 1998.
S. S. P. Parkin, “Giant Magnetoresistance in Magnetic Nanostructures”, Annu. Rev. Mater. Sci., vol. 25, pp. 357-388, 1995.
H. R. Sreepad, K. P. S. S. Hembram and U.V. Waghmare, “First-principles Study of Electronic and Dielectric Properties of Polyoxymethylene”, AIP Conference Proceedings, vol. 1349, pp. 871-872, 2011.
H. R. Sreepad, “First-principles study of fluorination of azobenzene”, Molecular Crystals and Liquid Crystals, vol. 634, pp. 91-96, 2016.
M. C. Payne et al., “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Rev. Mod. Phys., vol. 64, no. 4, pp. 1045-1097, 1992.
H. R. Sreepad, H. R. Ravi, Khaleel Ahmed and U.V. Waghmare, “Radiation induced changes in electronic and dielectric properties of polyoxymethylene”, AIP Conference Proceedings, vol. 1447, no. 1, pp. 793-794, 2013.
H. R. Sreepad, “Structure simulation and study of electronic and dielectric properties of two derivatives of benzamide”, Molecular Crystal sand Liquid Crystals, vol. 625, no. 1, pp. 195-201, 2016.
[Online] Available: http://en.wikipedia.org/wiki/ Molecular_modelling.
S. Baroni et al., [Online] Available: http://www.pwscf.org.
J. P. Perdew and A. Zunger, “Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems”, Phys. Rev. B, vol. 23, pp. 5048-5079, 1981.
D. Vanderbilt, “Soft self-consistent pseudo potentials in generalized eigenvalue formalism”, Phys. Rev. B, vol. 41, pp. 7892–7895, 1990.
H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Phys. Rev. B, vol. 13, no. 12, pp. 5188-5192, 1976.
M. A. Methfessel and Paxton, “High-precision sampling for Brillouin-zone integration in metals”, Phys. Rev. B, vol. 40, pp. 3616-3621, 1989.
[Online] Available: http://avogadro.openmolecules.net/wiki/.
J. Rodriguez-Carvajal et al., “Neutron-diffraction of the Jahn-Teller transition in stoichiometric LaMnO3”, Phys. Rev. B – Condensed Matter, vol. 57, pp. 3189-3192, 1998.
A. Kokalj, “Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale,” Computational Materials Science, vol. 28, pp. 155-168, [Online] Available: http://www.xcrysden.org/, 2003.
T. Arima and Y. Tokura, “Optical Study of Electronic Structure in Perovskite-Type RMO3 (R=La, Y; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu)”, J. Phys. Soc. Jpn., vol. 64, pp. 2488-2501, 1995.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 The Research Publication
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.