Study of Electronic and Dielectric Properties of L-Arginine Semimalonate

Authors

  • H. R. Sreepad Associate Professor, P.G. Department of Physics, Mandya University, Mandya, Karnataka, India

DOI:

https://doi.org/10.51983/ajsat-2021.10.2.3006

Keywords:

L-Arginine Semimalonate, First-Principles Calculation, Electron Density of States, Band Gap, Semiconductor

Abstract

First-principles calculations have been done on the L-arginine semimalonate C₉H₁₈N₄O₆ crystal based on Density Functional Theory. The Triclinic structure of Nitrilotrisethylene carbamic acid has been simulated using this formalism and the structural parameters have been found out. The Electron Density of States (EDOS) has been computed in the material using the Electronic structure calculation code of the software Quantum-Espresso which gives a Band gap of 2.35 eV. This value is found to be close to the value exhibited by semiconducting materials and photonic band gap materials. The value of polarizability has also been calculated. Its value comes out to be 77.40 Å3, 77.08 Å3, 76.55 Å3 along x,y and z axis with average value of 77.01 Å3. The values of Phonon modes have been computed using the ph.x program code of quantum espresso software. The values of computed phonon modes range from 0 cm−1 to 8012 cm−1.

References

Giuseppe Caliendo, Vincenzo Santagada, Elisa Perissutti, Beatrice Severino, Ferdinando Fiorino, Timothy D. Warner, John L. Wallace, Demian Rocha Ifa, Edson Antunes, Giuseppe Cirino and Gilberto de Nucci, European Journal of Medicinal Chemistry, Vol. 36, pp. 517-530, 2001.

Patent US5082862 - N-substituted benzamides.

D. S. La, T. Jiang, and M. Levett, “Self-assembling supramolecular complexes,” Chemical Reviews, Vol. 95, pp. 2229-2260, 1995.

A. Nangia, “Conformational Polymorphism in Organic Crystals,” Acc. Chem. Res., Vol. 41, No. 5, pp. 595-604, 2008.

G. N. Manjunatha Reddy, M. V. Vasantha Kumar, T. N. Guru Row, and N. Suryaprakash, “N-H...F Hydrogen bonds in fluorinated benzanilides: NMR and DFT study,” Phys. Chem. Chem. Phys., Vol. 12, pp. 13232-13237, 2010.

D. S. Lawrence, T. Jiang and M. Levett, Chem. Rev., Vol. 95, pp. 2229, 1995.

A. R. Sanford and B. Gong, Curr. Org.Chem. Vol.7, pp. 1649, 2003.

Steiner, T. Angew. Chem. Int. Ed., Vol. 41, pp. 48, 2002.

J. S. Park, H. S. Lee, J. R. Lai, B. M. Kim, and S. H. Gellman, J. Am. Chem. Soc., Vol. 125, pp. 8539, 2003.

J. L. Hou, X. B. Shao, G. J. Chen, Y. X. Zhou, X. K. Jiang, and Z. T. Li, J. Am. Chem. Soc., Vol. 126, pp. 12386, 2004.

B. Huang, M. A. Prantil, T. L. Gustafson, and J. R. Parquette, J. Am. Chem. Soc. Vol. 125, pp. 14518, 2003.

G. R. Desiraju, Chem. Commun., Vol. 16, pp.1475-1482, 1997.

H. R. Sreepad, Chemical Technology: An Indian Journal Vol. 11, No. 4, pp. 133-137, 2016.

H. R. Sreepad, Molecular Crystals and Liquid Crystals Vol. 625, No. 1, pp. 195-201, 2016.

M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulas, Rev. Mod. Phys., Vol. 64, No. 4, pp. 1045-1097, 1992.

H. R. Sreepad, Int. J. Machine Intelligence, (ISSN: 0975-2927), Vol. 3, No. 3, pp. 108-111, 2011.

H. R. Sreepad, H. R. Ravi, Khaleel Ahmed, U. V. Waghmare, AIP Conf. Proc. Vol. 1447, No. 1, pp. 793-794, 2013.

[Online]. Available: http://en.wikipedia.org/wiki/Molecular_ modelling.

S. Baroni, S. A. Dal Corso, P. DeGironcoli, and Gianozzi, [Online]. Available: http://www.pwscf.org

J. P. Perdew, and A. Zunger, Phys. Rev. B, Vol. 23, pp. 5048-5079, 1981.

D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B. Vol. 41, pp. 7892-7895, 1990.

H. J. Monkhorst, and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, Vol. 13, pp. 5188-5192, 1976.

M. A. Methfessel, and Paxton, “High-precision sampling for Brillouin-zone integration in metals,” Phys. Rev. B., Vol. 40, pp. 3616-3621, 1089.

[Online]. Available: http://avogadro.openmolecules.net/wiki.

A. Kokalj, “Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale,” Comp. Mater. Sci., Vol. 28, pp. 155-168, 2003. [Online]. Available: http://www.xcrysden.org/.

Saraswathi and Vijayan, Acta cryst sec B, Vol. 58, No. 6, pp. 1051-1056, 2002.

D. Arivuoli Pramana, “Fundamentals of nonlinear optical materials,” J. Phys., Vol. 57, No. 5&6, pp. 871-883, 2001.

Neville Boden, and Richard Bissell, Jonathan Clements and Bijan Movaghar, Current Science, Vol. 71, No. 8, pp. 599-601, 1996.

Downloads

Published

05-11-2021

How to Cite

Sreepad, H. R. (2021). Study of Electronic and Dielectric Properties of L-Arginine Semimalonate. Asian Journal of Science and Applied Technology, 10(2), 1–4. https://doi.org/10.51983/ajsat-2021.10.2.3006