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Abstract  –  The paper describes the multi-objective optimization 
of hole sinking electrical discharge micromachining (HS-
EDMM) process considering material removal rate (MRR), 
tool wear rate (TWR), and hole taper (Ta) as objectives 
simultaneously. The micromachining parameters considered in 
the present work are gap voltage and capacitance of capacitor. 
Eighteen set of experiments are conducted as per L18 orthogonal 
array and these experimental results are used for further 
optimization. Optimal combination of process parameters 
is determined using grey relational analysis that employs 
grey relational grade as performance indexes. The principal 
component analysis is applied to evaluate the weighting values 
corresponding to each performance characteristics so that their 
relative importance can be properly and objectively described. 
Optimal combination of the process parameters for the multi-
performance characteristics of the hole sinking electrical 
discharge machining has been found as; gap voltage 140V and 
100 pF capacitance of capacitor.

Keywords: Hole sinking electrical discharge micromachining, 
HS-EDMM, Optimization, GRA, grey relational analysis, PCA, 
principal component analysis.

I. IntroductIon

 In recent years, there is an increasing trend towards 
miniaturization of various engineering components. In view 
of this, micro machining techniques have become important 
in the fabrication of micro components based on the different 
mechanism of material removal. These miniaturized 
components/ products having multi functional distinctiveness 
are largely employed in electronics, optics, automobile, 
biotechnology, and aeronautical industries. Based on the 
mechanism of material removal rate, micro machining are 
classified into various processes like micro electro discharge 
machining (µ-EDM), micro ultrasonic machining (µ-USM), 
micro beam machining processes (µ-BMPs), micro jet 

machining processes (µ-JMPs),  and micro chemical 
machining processes (µ-CMPs). Micro-EDM is one of the 
successful micro machining processes to create micro feature 
(order of few hundred of microns) in difficult to machine 
electrically conductive materials. The mechanism of material 
removal is similar to that of conventional EDM. The machine 
setup has a servo control system with the highest sensitivity 
and positional accuracy of ±0.05µm along with the inter 
electrode gap of 1-5 µm. The power supply used in µ-EDM 
is relaxation or transistor type pulse generator with MHz of 
pulsating frequency. The efficiency of this process is high as 
the low specific energy of material removal at low discharge 
level [1]. There are many variations of μ-EDM depending on 
the configuration of tool and workpiece as well as the type of 
feature that can be created. Such variations can be classified 
as: Die Sinking-EDMM to create unsymmetrical features of 
small depth to diameter ratio, Hole Sinking- EDMM to create 
symmetrical features of relatively large depth to diameter 
ratio, Hole Drilling-EDMM, Pocket Milling-EDMM, 
Wire-EDMM, and Wire Micro-Electro Discharge Grinding 
(Wire- MEDG). In the present paper, the multiple responses 
MRR, TWR, and Ta are simultaneously optimized using L18 
orthogonal array based experimentation and GRA couples 
with PCA during HS-EDMM process.

II. lIterature revIew

     Higher accuracy and miniaturization have been always 
the goals for the development of μ- EDM machines. Wong 
et. al [2] developed a single-spark generator to study the 
erosion characteristics from the micro crater size due to 
micro-EDM. Their experimental results suggested that 
volume and size of the micro craters are found to be more 
consistent at lower-energy discharges than at higher-energy 
discharges.  An optical sensor has been developed by Lin 
and Ho [3] to measure and control the dimension of the thin 
electrode during the tool fabrication process. They observe 
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that the rotating electrode shows the best performance in the 
high-aspect ratio tool-electrode fabrication and machining 
depth is inversely proportional to the feed rate. A 4-axis 
μ- EDM machine using DC servo motors was developed 
by Zhao et. al [4]. They used granite base to decrease the 
stray capacitance for lower discharge energy, also a 25 μm 
diameter micro-hole with aspect ratio over 10 was drilled 
on this machine. A 3-axis local actuator module for μ- EDM 
was developed by Imai et.al [5]. This module had 200 Hz 
bandwidth and utilized the electromagnetic force for the 
holding and positioning of the electrode. A 60 μm diameter 
micro-hole with aspect ratio over 16 was machined by this 
module. Takezawa et. al [6] have developed a micro-EDM 
machining center, which was able to carried out on-the-
machine measurement of the work piece shape and small 
holes or two-dimensional micromachining.  Han et. al [7] 
have developed a new transistor type isopulse generator and 
servo feed control to improve the machining characteristics 
of micro-EDM. It is observed that the transistor type isopulse 
generator is more useful in semi finishing than in finishing, 
whereas servo feed control is better in finishing as compare 
to semi finishing. 

 Sona et. al [8] investigated the influences of electrical 
pulse condition on the machining properties in micro-EDM, 
they found that the voltage and current are proportional to 
the material removal rate, while current is only proportional 
in the case of tool wear rate. Also shorter pulse on duration is 
profitable to make accurate machining with a higher removal 
rate and a lower tool wear rate. Uhlmann et. al [9] studies 
the process behavior of boron doped CVD-diamond and 
polycrystalline diamond in micro-EDM well as influences 
of electrode materials on tool electrode wear and surface 
formation processes. Johan et. al [10] studied the effect 
of different tool electrode materials (W, AgW, CuW) on 
workpiece material (WC) for material removal rate (MRR) 
and tool wear rate (TWR). It was observed that the AgW 
electrode produces smoother and defect-free nano surface 
among the three electrodes. Besides, a minimum amount 
of material migrates from the AgW electrode to the WC 
workpiece during the finishing micro-EDM. CuW electrode 
achieved highest MRR while W electrode have lowest tool 
wear among all electrodes.

 Dhanik et. al [11] have proposed a comprehensive model 
of micro- EDM process for a RC-pulse discharge circuitry 
considering the active role of plasma throughout the discharge. 
It includes the modeling of the breakdown phase, various 

phenomena in the pre breakdown period, such as current 
emission and bubble nucleation at micro-peaks, leading to 
breakdown by electron-impact ionization. The effects of 
variable mass expansion plasma on the energy transferred to 
respective electrodes were also modeled using fluid dynamic 
and heat transfer equations.  Kumar and Yadava [12] 
developed a finite element-based thermal model of micro- 
EDM for the determination of temperature distribution in the 
zone of influence of single spark, crater shape and size as a 
result of the material removal. Their calculated crater radius 
was verified with experimental results, and the parametric 
results shows that heat flux and input energy are inversely 
proportional to energy partition value, and the crater depth 
decreases with respect to increase in spark radius. Das and 
Joshi [13] have developed an analytical model that takes into 
account plasma features, moving heat source characteristics, 
multi-spark phenomenon, and wire vibrational effects to 
predict the cathode erosion rate for a single and multi-spark 
in micro-WEDM process. Karpat and Ozel [14] introduces 
a procedure to formulate and solve optimization problems 
for multiple and conflicting objectives that may exist in 
finish hard turning processes using neural network modeling 
together with dynamic neighborhood particle swarm 
optimization technique. 

 This study uses the TM to achieve the experimental data, 
employs the GRA to find the optimal processing parameters 
combination, and applies the PCA to remove the relativity 
among the qualities.

III. exPerImental PlannIng

 Hole sinking electrical discharge micromachining 
(HS-EDMM) was performed on multi process micro 
electro discharge machine (Model DT-110, Mikrotool Pte, 
Singapore), having fixed level of capacitance, and adjustable 
range of voltage. Tungsten carbide rod of 500 μm diameter 
was used as tool electrode. The micro HS-EDMM operation 
was performed on rectangular section cuboid shape workpiece 
specimens made of Ti-6Al-4V having mean thickness of 
0.5mm, length 25 mm, and width 15 mm. The removal of 
debris was achieved by lateral flushing with dielectric (EDM 
oil). The depth of cut was kept constant 510 micron for all 
experiments. In the present research, analysis of the effect 
of different parameter settings on material removal rate, tool 
wear rate, and hole taper was carried out. After preliminary 
investigations, two input parameters were selected as: gap 
voltage and capacitance of capacitor. Selection of the range of 
process parameter settings was made after performing some 
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pilot experiments within the stable domain of the machining. 
The levels of parameters selected are shown in Table I. The 
amount of material removed from the workpiece and tool 
electrode were measured with the help of citizen make micro 
weighing balance having least count of 0.0001grams.

 Material removal rate (MRR) and tool wear rate (TWR) 
are defined as volume of material removed or wear in unit 
time from workpiece and tool electrode respectively.

Table 1 The maChInIng parameTers and TheIr levels

 Hence, based on their density the MRR and TWR are 
calculated as; 

 

 

 
In order to find machined hole taper (Ta), the diameter of 

hole at entrance and exit is measured using optical measuring 
microscope (Model SDM-TR-MSU, Sipcon Instrument 
Industries, India) at 10 x magnifications (as shown in Figure 
1) and Ta was calculated as:

 
 

 Experiments were carried out using fractional factorial 
combinations of these factors and their different levels. 
During experiments the workpiece thickness was kept 
constant for all experimental run. Dielectric was also kept 
same for experimentation. As per Taguchi methodology an 
orthogonal array was selected based on the input parameters 
and their levels. Interaction effect was not taken into account.  
L18 orthogonal array was selected with one input parameters 
of three levels and other parameter of six levels. To achieve 
validity and accuracy, each test has been repeated three times. 
The responses considered were material removal rate, tool 
wear rate and hole taper of the micro through holes.

Iv. oPtImIzatIon of HS-medm uSIng 
gra couPled wItH Pca

 Selected combinations of input parameters were used 
as input parameter for optimization using grey relational 
analysis (GRA) coupled with principal component analysis 
(PCA). In GRA, all information represents in terms of black 
and white. Black represents having no information and 
white represents having all information [15]. Grey relational 
analysis can be used to represent the grade of correlation 
between two sequences so that the distance of two factors 
can be measured discretely. It helps to compensate the 
shortcomings of statistical regression by means of conducting 
less number of experiments, as experiments are ambiguous or 
experimental methods does not allow to do the exact number 
of experiments [16]. Grey relational analysis is an effective 
means of analyzing the relationship between sequences with 
less data and can analyze many factors that can overcome the 
disadvantages of statistical method [17]. The steps involved in 
performing grey relational analysis are to first preprocess the 
input data. It is required, as it relates to a group of sequences, 
this preprocessing generates the grey relational generation. 
Data preprocessing is a process of transferring the original 
sequence to a comparable sequence. For this purpose, the 
experimental results are normalized in the range between 
zero and one. In present study, normalization of MRR was 
done by using equation (2), as higher the better is required 
here, while normalization of TWR and overcut was done by 
using equation (1) because smaller the better is desired [18]. 

                                    (1)

                                    (2)

Fig. 1 Microscopic views of micro sinker holes at entry (a) and exit (b) with 
machining conditions 10V, 100 nF
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 where,  is the value after the grey relational 
generation,  is the largest value of ( )kx0

i ,
( )kxmin 0

i  is the smallest value of ( )kx0
i . Table II lists

 all of the sequences following data pre-processing using 
equation (4) and equation (5).  Also the deviation sequences

, and   for   can be 
calculated using equations (4-6). These values of deviation 
sequences were used for further calculation of grey relational 
coefficients by using equation (3). The grey relational 
coefficient represents the relationship between the ideal and 
actual normalized experimental results. The grey relational 
coefficient can be expressed as follows [18]:

    (3) 
  

 Where  is the deviation sequence of the reference 
sequence  and the comparability sequence  namely

     (4)

    (5)

    (6)

  is the distinguishing coefficient, which is defined in the 
range   ,   is generally used. After obtaining the 
grey relational coefficient, we normally take the average of 
the grey relational coefficient as the grey relational grade. 
The grey relational grade is defined as follows: [17].

     (7)

 However, since in present research the effect of each 
factor on the system is not exactly same. Eq. (7) can be 
modified as

 ,                       (8)

 where  represents the normalized weighting value 
of factor k. Given the same weights, Equation (7) and (8) 
are equal. In the grey relational analysis, the grey relational 
grade is used to show the relationship among the sequences. 
If the two sequences are identical, then the value of grey 
relational grade will be equal to 1. The grey relational grade 
also indicates the degree of influence that the comparability 
sequence could exert over the reference sequence. Therefore, 
if a particular comparability sequence is more important than 

the other comparability sequences to the reference sequence, 
then the grey relational grade for that comparability sequence 
and reference sequence will be higher than other grey 
relational grades [19]. In this research the corresponding 
weighting values i.e.   are obtained from the principal 
component analysis.  Principal component analysis (PCA) 
was developed by Hotelling [20].

 This approach explains the structure of variance-
covariance by the way of the linear combinations of each 
quality characteristic. The procedure is adapted to calculate 
the weight in the present research is as follows [21]; first we 
convert the calculated grey relational coefficient into matrix 
form as represented in equation (9), where m is the number of 
experiment and n is the number of the quality characteristic. 
In present study, x is the grey relational coefficient of each 
quality characteristic and m = 18, n = 3. The above matrix 
is used to find out the correlation coefficient. The array of 
correlation coefficient was calculated by using equation (10).

Table II The sequenCes of eaCh performanCe

CharaCTerIsTIC afTer daTa pre-proCessIng
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   (9)

   (10)

 

 here    is the covariance of sequences and
( )jxi ,  is the standard deviation of sequence ( )jxi  

and  is the standard deviation of sequence . After 
calculating correlation coefficient array, eigenvectors and 
eigenvalues were calculated by using equation (11). The 
procedure of getting eigenvectors and eigenvalues from 
correlation coefficient array is as follows

     (11)

 where  eigenvalues,

     

 

 is the eigenvectors corresponding to the eigenvalue . 
The eigenvectors and eigenvalues were further used to find 
principal components by using equation (12).

     (12)

 where  is called the first principal component, 
is called the second principal component and so on. The 
principal components are aligned in descending order 
with respect to variance, and therefore the first principal 
component  accounts for most variance in the data, Table 
III.

Table III The eIgenvalues and explaIned varIaTIon for prInCIpal 
ComponenTs

Table Iv The eIgenveCTors for prInCIpal ComponenTs

Table v The ConTrIbuTIon of eaCh IndIvIdual qualITy CharaCTerIsTIC 
for The prInCIpal ComponenT

 Next step is to find percentage contribution or explained 
variation of eigenvalues. The eigenvector corresponding 
to each eigenvalue is listed in Table IV. The eigenvectors 
corresponding to the largest eigenvalue were selected, and 
the square of the eigenvalue vectors corresponding to the 
first principal component represents the contribution of 
the respective performance characteristic to the principal 
component. The contribution of material removal rate, 
tool wear rate, and overcut is shown in Table V.  These 
contributions are indicated as 0.4915, 0.4645, and 0.0434 
for MRR, TWR, and Ta respectively. Moreover, the variance 
contribution for the first principal component characterizing 
the three performance characteristics is as high as 73.05%. 
Hence, for this study, the squares of its corresponding 
eigenvectors were selected as the weighting values of the 
related performance characteristic, and coefficients 1w , 2w

and 3w   for equation (11) were thereby set as 0.4915, 0.4645, 
and 0.0434 respectively. Based on Eq. (14) and data listed in 
Table III, the grey relational grades were calculated by using 
these weights of corresponding performance parameter and 
grey relational coefficients after taking sum of these values 
for each set of experiment, the values of grey relational 
grades are shown in Table VI. Thus, the optimization design 
was performed with respect to a single grey relational 
grade rather than complicated performance characteristics. 
According to performed experiment design, it is clearly 
observed from Table VI that the HS-EDMM parameters 
setting of experiment No. (18) has the highest grey relational 
grade. Thus, the eighteenth experiment gives the best multi 
performance characteristics among the eighteen experiments.

 The response table was employed to calculate the 
average grey relational grade for each HS-EDMM parameter 
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level. It was done by sorting out the grey relational grades 
corresponding to levels of the HS-EDMM parameter in each 
column of the orthogonal ay, and taking an average on those 
with the same level. Using the same method, calculations 
were performed for each HS-EDMM parameter level and 
the response table was constructed as shown in Table (7). 
Basically, the larger the grey relational grade, the better are 
the multiple-performance characteristics. In Table (5), A6 and 
B2 show the largest value of grey relational grade for factors 
A and B. Therefore, A6B2 is the condition for the optimal 
parameter combination of the HS-EDMM. 

Table vI grey relaTIonal grade and ITs order

Table vII response Table for The grey relaTIonal grade

 When the last column of performance parameters in 
Table VII is compared with each other, it is observed that the 
difference between the maximum and minimum value of the 
grey relational grade for factor B is the more than factors A. 
This indicates that the capacitance of capacitors has stronger 
effect on the multi-performance characteristics followed by 
gap voltage.

V. concluSIonS

 HS-MEDM of 0.5mm thick sheet of Ti-6Al-4V has been 
carried out and grey relational analysis coupled with principal 
component analysis optimization strategy has been used to 
determine the optimal combination of control parameters. 
The results of the present study are summarized as:

• The responses obtained from the Taguchi 
method can convert optimization of the multiple-
performance characteristics into optimization 
of a single performance characteristic called the 
grey relational grade. As a result, optimization of 
complicated multiple - performance characteristics 
can be greatly simplified through this approach.

• The principal component analysis which is used to 
determine the corresponding weighting values of 
each performance characteristics while applying 
grey relational analysis to a problem with multiple-
performance characteristics is proven to be capable 
of objectively reflecting the relative importance for 
each performance characteristic.

• The optimal combination of the HS-EDMM 
parameters obtained from the proposed method is 
the set with gap voltage 140V and 100nF capacitance 
of capacitor.
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