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Abstract - The aim of the study is to reconfigure the automatic 

flight control systems of a hypersonic vehicle so that dynamic 

stability can be restored when flight control fails. LQR theory 

is used to first find the feedback gain when all 3 flight control 

systems are working. Failure was simulated one at a time to 

investigate lost in dynamic stability. When instability occurs, 

the new gains are obtained for the remaining flight controls 

using a modified Minimum Principal theory. The simulations 

show that the dynamic stability can be restored using these 

new reconfiguration gains if any one of the 3 flight control 

systems fail at one time but not in combination. The failure of 

elevator flaps at hypersonic speeds is likely due to 

aerodynamic heating. It is shown that the engine diffuser and 

the temperature across combustor controls can regain 

longitudinal dynamic stability to at least slow down the 

aircraft to safety. Study is limited to longitudinal motion only. 

Keywords: Hypersonic Vehicle Dynamics, Control 

Reconfiguration, LQR Theory, Minimum Principle 

I. INTRODUCTION

A situation may arise in flight when one or more of the 

aircraft control inputs becomes inoperative. To avoid the 

potential loss of the Hypersonic Transport Aircraft (HST) 

aircraft due to the instability which can result as a 

consequence of this loss in control, it is necessary to have 

available another closed-loop control system which will be 

capable of restoring the dynamic stability by using the other 

control surfaces or excursions which are still functioning. 

Such a technique is referred to as reconfiguration control.  

HST is a vision of the aviation future, which started since 

the 1950’s with the launch of the X-15 hypersonic 

programs. That idea has recently been kept in the fore front 

of aviation with the publication of a NASA contracted 

report entitled ‘Independent Market Study: Commercial 

Hypersonic Transportation’ [1].Various articles in 

magazines such as [2,3,4]. Unlike aircraft flying at 

supersonic speeds, aircraft attempting or attempted to fly at 

hypersonic speeds have faced many technical challenges. A 

few of these problems have been highlighted in [1] again, 

50+ years after the first flight of X-15. This implies that 

those problems still have no solution or proven solutions for 

hypersonic vehicle to fly safely at hypersonic speeds. 

One of the challenges highlighted in [1] is the need to 

accept the highly likeliness that HST aircraft primary flight 

control surfaces will not be effective when flying at high 

hypersonic speeds. In addition to that, it is also highly likely 

that when deflected, the heat generated from the air friction 

will likely damage the control surfaces as no material have 

yet been found that can sustain such temperatures generated 

due to aerodynamic heating. But flying a hypersonic aircraft 

will not involve flying at hypersonic speeds only. These 

flight control surfaces are still required for flight phases 

involving subsonic and supersonic speeds. Hence, these 

flight control surfaces will still be used onboard the aircraft, 

but it is expected that these flight control surfaces will be 

used together with Reaction Jet Controls (RJC) for better 

effectiveness. The control surfaces will still be used.  

Because of this, some work has been done on systems that 

could tolerate failure of the hypersonic flight control 

systems. [5] proposed a solution to abrupt actuator faults by 

circumventing unwanted effects of the faulty actuators 

through estimating the lower bonds of the gain faults and 

the upper bounds of the bias faults. In [6], a passive fault 

tolerant control scheme was proposed in the presence of 

actuator fault. It was shown in that work that not only the 

benefits of both incremental control and twisting control are 

inherited, but their side effects were also reduced. In [7], a 

fault tolerant control law (FTC) was proposed consisting of 

improved integral sliding mode (ISM) equivalent law, a 

power reaching law, and a new adaptive compensation 

control law. In that work, the FTC showed fast convergence 

speed and expected attitude tracking performance. The work 

done in [8] specifically focused on faulty rudder on the 

hypersonic vehicle and investigated the use of hybrid FTC. 

In [9], the authors proposed an adaptive control scheme for 

hypersonic vehicle experiencing actuator failures. 2 

adaptive fault tolerant controllers were designed for velocity 

subsystem and altitude system. By using the controllers, 

flight states containing the angle of attack, flight path angle, 

pitch angle and pitch angle rate could be guaranteed in 

prospective ranges. 

The novelty of the work presented in this paper is the 

regaining of the aircraft fundamental stability – the dynamic 

stability. The work here shows that when a HST flying at 

Mach 8 at 85,000ft with Stability Augmentation System 

(SAS) engaged, the dynamic stability of the aircraft would 

be compromised when the elevator control surface 

completely malfunction. The other 2 remaining controls, the 

temperature across combustor, To, and duct area ratio, AD, 
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failed to sustain the dynamics stability of the aircraft after 

the total loss of elevator control surface. But when the 

aircraft use the new proposed reconfigured feedback gain, 

both To and AD managed to sustain the aircraft dynamic 

stability. When the aircraft responses were investigated, the 

transitions of control authority to the remaining controls 

occurred without drastic effects on the responses. It was 

interesting to observe that for this aircraft flying at such 

high speed as Mach 8 at 85,000ft, the dynamic stability 

could be sustained well using the remaining controls. The 

regaining of dynamic stability would allow the pilots or 

autopilot system to at least slow down the aircraft to a safer 

speed and land for inspections. The work done is focused on 

longitudinal motion only. 

 

II. THE VEHICLE 

 

For convenience of reference, the name HYPERION has 

been given by the present authors to this mathematical 

model. A sketch of this hypothetical aircraft is shown in 

Fig. 1. 

 

 

Fig. 1 The Generic Hypersonic Aircraft Sketch 

 

The mathematical model was linear and has five control 

inputs, viz.: 

 

F denoting flap surface deflection. 

AD denoting the ratio of engine diffuser area. 

To denoting the temperature across the engine combustor. 

A denoting aileron deflection. 

R denoting rudder deflection. 

 

The first three controls are used for controlling longitudinal 

motion and the final two are used for controlling the aircraft 

lateral motion. Hyperion concept is based on the work by 

Chavez and Schmidt [10]. These authors conducted a 

thorough analysis of the mathematical model of the 

hypersonic aircraft on a two-dimensional representation 

which is shown as Fig. 2.  

 

By using this two-dimensional model, two important 

features simplify the analysis of the dynamic characteristics 

of the aircraft: a forebody compression surface and an 

afterbody/nozzle expansion surface. The lower forebody 

compression surface serves as a lifter and acts as an external 

diffuser for the engine. The vehicle afterbody and nozzle 

surfaces serve as external expansion nozzles which produce 

both thrust and lift. In Table I are the aircraft geometry data 

used for all the mathematical models of the longitudinal 

motion considered in this paper. 

 

 

37 ARME Vol.10 No.1 January-June 2021

Regaining Loss in Dynamic Stability after Control Surface Failure for an Air-Breathing Hypersonic Aircraft Flying At Mach 8.0



Fig. 2 Two-dimensional representation and geometrical details of the HST vehicle 

 
TABLE I AIRCRAFT GEOMETRY DATA 

Aircraft Geometry 

1 =0.24435 rad (14o) O =0.52395 rad (30.02o) 

2 =0.34907 rad (20o) h =22.20 ft 

L =150 ft 1  =1.7453 10-2 rad (1o) 

L1 =89.02ft 2  =1.7453 10-2 rad (1o) 

L2 =60.98 ft m =500 slug/ft 

b

Scs
 =22.5ft m =40 slug/ft 

x  =90.00 ft g =32.2 ft/s2 

z  =11.25 ft Iyy =1.0 106 slug ft2/ft 

xcs =-52.50 ft 1 =18 rad/s 

zcs =-11.25 ft 1  =0.02 

l1 =91.756 ft l2 =64.894 ft 

 

yyI  is the inertia per unit width about the Y-axis, csS  is the 

control surface reference area, 1  is the frequency of the 

first in-vacuo vibration mode, 1 is the damping ratio of 

first in-vacuo vibration mode, m is vehicle mass per unit 

width, and m is the generalised elastic mass per unit width. 

 

III. LONGITUDINAL MOTION OF AN 

HYPERSONIC TRANSPORT AIRCRAFT 

 

The mathematical model of longitudinal motion used in this 

article was developed from an initial model based on that 

developed by Chavez and Schmidt [10]. Basically, the 

integrated modelling approach was used whereby 

contributing vector components (from three main sources; 

aerodynamic, propulsion and aeroelastic effects) were added 

to represent the forces in the X-axis direction, and the Z-

axis direction and the total moment, M, about the centre of 

mass of the aircraft. A set of stability and control derivatives 

resulted from this analysis. 

 

In the work reported here, the model of Chavez and Schmidt 

had to be modified to permit the investigation of the 

dynamic stability of the aircraft at Mach numbers above 8.0 

and at heights above 85000ft i.e during the scramjet-phase 

of the flight mission. 
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Without a closed-loop control system Hyperion has been 

shown to be dynamically unstable [11]. A SAS was 

designed which stabilised the motion. Now, several 

different combinations of types of control input failures  

 

were simulated to study the effect of different types of 

control input malfunction on the stability of the closed-loop 

aircraft dynamics. A technique of reconfiguring the closed-

loop system by using the remaining active controls to 

recover stability was then considered subsequently. 

 

IV. METHODOLOGY 

 

A. The Mathematical Model of the Longitudinal Motion 

 

The mathematical model used was represented by a linear, 

time-invariant, state equation: 

 

�̇� = 𝐴𝒙 + 𝐵𝒖    (1) 

 

xRn represents the state vector and uRm represents the 

control vector. A is the state coefficient matrix and B is the 

driving matrix, of order (nn) and (nm) respectively. If, for 

example, the aircraft dynamics has 7 state variables and 3 

control variables, then n = 7 and m = 3. The state and the 

control variables are defined in Eqn (2) and Eqn (3). viz. 

 

 

𝒙 =

[
 
 
 
 
 
 
 

𝛥𝑢 (ft/s)

𝛥𝛼 (rad)

𝛥𝑞 (rad/s)

𝛥𝜃 (rad)

𝛥ℎ (ft)

𝛥𝜂 (rad)

𝛥�̇� (rad/s)]
 
 
 
 
 
 
 

    (2) 

 

𝒖 =[

𝛥𝛿𝐹 (rad)
𝛥𝐴𝐷

𝛥𝑇𝑜 (𝑜𝑅)
]    (3) 

 

The state variables are the forward speed u, the angle of 

attack , the rate of change of the pitch attitude q, the pitch 

attitude , the height h, the bending displacement  and the 

rate of change of bending displacement �̇�. The variables are 

all perturbations from an equilibrium flight condition. 

 

The output equation can be represented by: 

 

y = Cx+ Du     (4) 

 

where 
pRy . The output matrix, C, is of order (pn) and 

D is of order (pm). Often not all state variables in the 

aircraft dynamics are measurable. For example, if only three 

of the seven state variables are measurable, then p = 3. 

 

B. Dynamic Stability of an Aircraft 

 

The dynamic stability of the aircraft corresponding to the 

mathematical model was assessed by examining the eigen 

values of the corresponding coefficient matrix, A, of the 

state-space equation [12]. Eigen values of the aircraft 

without any stability augmentation, , were obtained by 

solving the linear equation 

 

det[𝜆I - A] = 0     (5) 

 

I is an identity matrix. Any aircraft is dynamically unstable 

if any of its eigen values has a positive real part.  

 

C. Stabilisation of the Longitudinal Motion of Hyperion 

 

The method of designing an effective SAS for Hyperion to 

stabilise the aircraft dynamics based on Linear Quadratic 

Regulator (LQR) theory is described in this section. The 

mathematical model was represented by Eqn (1). 

D. Important Features of LQR Theory for Stability 

Augmentation 

 

Using LQR theory, an optimal feedback control law can be 

obtained which guarantees the dynamic stability of the 

controlled aircraft. A performance index is minimised 

subject to the constraint of Eqn (1).  

The performance index used in this work is given as Eqn 

(6). 

( )dtGQ
2

1
J

0




+= uuxx
TT

   (6) 

The superscript, T, indicates the transpose of the matrix.  

 

The state-weighting matrix, Q, is of order (nn) and the 

control-weighting matrix, G, must be of order (mm). The 

resulting optimal linear feedback control law can be shown 

to be: 

 

uo = -Kx      (7) 

where the feedback gain matrix, K, is defined as: 

 

K = G-1BTP     (8) 

 

P is the solution obtained from solving the corresponding 

algebraic Riccati equation. P is a symmetrical positive 

definite matrix. The algebraic Riccati equation is: 

 

PA + ATP – PBG-1BTP + Q = 0   (9) 

 

The dynamic stability of an aircraft with closed-loop control 

can be determined by solving Eqn (10). A controlled aircraft 

is dynamically stable if all the real eigenvalues of the 

closed-loop eigenvalues or the real parts of these 

eigenvalues are negative. 

 

( )  0KB-A-Idet =    (10) 
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In this research work, a Computer Aided Engineering 

(CAE) software package (called Matlab) was used, together 

with its associated Control System Toolbox, to obtain the 

solution, P, to the Riccati matrix equation, the feedback 

control matrix, K, and also the closed-loop eigenvalues of 

the system. 

 

Three conditions must be satisfied when using the package 

to solve any LQR problem. These theoretical requirements 

are commonly stated in the literature as 

1. The matrix, G, must be positive definite. 

2. The matrix, Q, must be at least positive semi-definite. 

3. The system of Eqn (1) must be completely controllable. 

 

 

Fig. 3 Aircraft dynamics with a Stability Augmentation System (SAS)

xcomm is the command input for the controlled aircraft 

dynamics, and is a vector of dimension, n. The state 

equation for the closed-loop system now becomes,  

 

( ) commxxx +−= BKA    (11) 

 

and the output equation, 

 

( )xy DKC −=     (12) 

 

 

E. A Method to Reconfigure a Closed-Loop Control System 

 

By using LQR theory, an unstable aircraft can be stabilised. 

An optimal control law like Eqn (7) can then be used to 

provide stabilisation. But when a control failure occurs, this 

closed-loop control law requires modification so that 

stability can be regained using the control inputs that are 

still active [13]. 

 

To account for control failures, Eqn (7) should be re-written 

as: 

 

uR = -KDKFBx     (13) 

 

Note here that the control vector uR is of order (m1) and x, 

the state vector is of order (n1). uRrepresents a 

reconfiguration control vector and KD a control distribution 

matrix. KFB is the feedback gain matrix. If the control 

reconfiguration is perfect, then,  

KDKFB = K     (14) 

 

where K is the optimal feedback gain matrix obtained when 

all control inputs of the aircraft are operating. 

Hence, a perfect reconfiguration system will ensure that:  

 

BF uR = Buo     (15) 

 

Here B is the original driving matrix of the aircraft without 

control input failure, and BF is the driving matrix of the state 

equation of the aircraft with one or more of the control 

inputs inoperative. Those columns of BF which correspond 

to the failed control inputs are null. Note that the case being 

considered here is complete failure of the control. 

 

Next, let KDO denote the no-failure distribution matrix and 

KDR denote the reconfiguration control distribution matrix. 

Both matrices are square and of order (mm). Without any 

control input failure  

 

KDO = KD     (16) 

 

In Eqn (5.2), K is of order (mn). If KFB is also of order 

(mn), then KDO will be square and of order (mm). To 

obtain KFB, KDO is taken to be some convenient, but 

arbitrary matrix. So, from Eqn (14), 

 

KDO.KFB = K    (17) 

 

ie. perfect reconfiguration is assumed. If KDO is chosen to be 

an identity matrix, then,  
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KFB = K      (18)

  

It should be noted that the choice of KDO is arbitrary so that 

it need not necessarily be an identity matrix to achieve the 

required distribution for stability. KDR can be found by 

minimising a quadratic matrix function, L, using the 

‘Minimum Principle’ [12]. Suppose the function, L, to be 

minimised is written as: 

 

L = (BF.KDR – B.KDO)T. Z .(BF.KDR – B.KDO) + KDR
T. M . 

KDR                                              (19) 

 

Those persistent and large errors which exist between the 

responses of the no-failure control system and that of the 

reconfigured control system are penalised by the weighting 

matrix, Z, of order (nn). The size of the elements in KDR is 

constrained by the weighting matrix, M, of order (mm).  

 

From Eqn (19), 

0
K

L

DR

=



     (20) 

 

Hence, 

( ) DOF
1

FFDR .Z.B.KBM.Z.BBK
TT −+=  (21) 

 

Using these matrices KDR and KFB, the eigenvalues, , of the 

reconfigured control system can be found by solving Eqn 

(22). i.e. 

 

( )  0KKBAIdet FBDRF =−−    

where i = 1,2,3 …n                   (22) 

 

The objective of the reconfiguration system is to drive the 

closed-loop eigenvalues of the aircraft with control failure 

to be as close to, if not identical to, those obtained when 

there is no control failure, i.e: 

 

( )  ( ) BKA-IdetKKBA-Idet FBDRF −=− (23) 

 

Incidentally, when any control input suddenly becomes 

inoperative, then the eigenvalues of the aircraft with the 

faulty control input can be found using the corresponding 

matrix, BF, associated with the control input failure, viz. 

 

( )  0KBAIdet F =−−    (24) 

 

The block diagram of the aircraft dynamics with the control 

reconfiguration system is represented in Fig. 4. 

 

 

 

 

Fig. 4 Aircraft dynamics with a control reconfiguration system 

 

The matrices that can be selected by the designer when 

reconfiguring the aircraft control system are KDO, Z and M. 

Of course, the designer also has the choice of selecting the 

matrices, Q and G, used to minimise the performance index 

Eqn (6) for initial stabilisation of the aircraft without control 

failure. It is shown in the next section that using different 

matrices Z and M can achieve the desired stable 

reconfigured aircraft. 

V. RESULTS AND DISCUSSION 

 

This section of the paper contains results from 4 dynamic 

stability situations that would be shown by the hypersonic 

vehicle during flight at hypersonic speeds. In these tests, the 

aircraft was simulated flying at Mach 8.0 at a height of 

85000ft. The situations are as follows. 
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1. The dynamic stability without any assistance from the 

Stability Augmentation System. 

2. The dynamic stability with the assistance from the 

Stability Augmentation System. 

3. The dynamic stability when control surface completely 

fails but aircraft is assisted by the same Stability 

Augmentation System when all controls were working 

4. The implementation of Reconfiguration System to 

regain control to regain dynamic stability closed to 

before failure occurred. To regain the loss of control 

with least change to flight dynamics performance to the 

aircraft is ideal. This hypersonic vehicle is travelling at 

Mach 8 hence, even if the dynamic stability could be 

regained, if the acceleration change caused due to the 

failure was huge, the prospect of structural failure is 

likely and the whole exercise to recover the aircraft 

flight stability deemed useless.  

 

From the derivation of mathematical model, the matrices A 

and B for Hyperion flying at Mach 8 at an altitude of 

85,000ft was found to be as follows: 
 

 

A = 

[
 
 
 
 
 
 
−4.185710−3 −35.03 0.4269 −32.2 7.993810−4 18.614 0.4301
−2.315810−6 −5.871610−2 1.0002 0  4.422710−7 −3.953410−2 2.197410−4

 −9.464710−6 4.3430  −5.788510−2 0 1.807610−6 7.2990 −5.284610−2

0 0 1 0 0 0 0
0  −7.8487103 0 7.8487103 0 0 0
0 0 0 0 0 0 1

1.493810−3 54.953 −0.41812 0 −2.852910−4 −269.05 −1.1340 ]
 
 
 
 
 
 

 

(25) 
 

                                  B =

[
 
 
 
 
 
 
−1.1359 × 102 −1.7159 × 102 1.3329 × 10−2

−1.4513 × 10−2 4.7726 × 10−3 −1.672 × 10−7

−2.3511 −8.2859 × 10−1 6.909 × 10−5

0 0 0
0 0 0
0 0 0
0 −9.8249 × 10−1 3.4421 × 10−5 ]

 
 
 
 
 
 

                                              (26) 

 

To study the effect of loss in flight control surfaces or 

engine parameters, the performance of the aircraft when all 

control surfaces and engine parameters are working 

properly are determined first. Comparison can be made later 

if any changes has occurred because of the failure.  Of  

 

particular interest to the work here is the dynamic stability 

of the hypersonic aircraft and the implications to the aircraft 

dynamic responses with respect to time. When no SAS is 

incorporated into the aircraft flight dynamics, the aircraft 

eigen values obtained are shown in Table 2. 

 
TABLE II HYPERION OPEN-LOOP EIGENVALUES, NATURAL MODE FREQUENCIES AND DAMPING RATIOS 

 THE AIRCRAFT DYNAMICS  CORRESPONDED TO HYPERION FLYING AT MACH 8.0 AND AT A HEIGHT OF 85000FT 

 

Open - Loop Eigenvalues 
Natural 

Frequencies 
Damping Ratios Motion Represented 

1,2 = -0.00189  j0.0578 0.058 rad/s 0.03 Phugoid 

3,4 = -0.55  j16.4 16.4 rad/s 0.03 Structural Bending 

5 = -2.49 - - Short Period 

6 = 2.33 - - Short Period 

7 → 0 - - Height 

 

When any aircraft is subjected to a command or 

disturbances, the induced short period mode shows 

significant changes in the angle of attack and the pitch rate 

[14]. Without any S.A.S, Hyperion showed highly unstable 

short period motion (See Table I).  

 

How LQR theory was used to obtain an optimal feedback 

control law which stabilised the aircraft dynamics is 

described next. The matrices, Q and G, which were chosen 

for the performance index given in Eqn (6) are presented 

below. 
 

 0.00.01011.00.100.50.1diagQ 5−=  (27) 

 0.10.10.1diagG =    (28) 

 

The choice of the elements for the matrix, Q, was made to 

stabilise the short period mode.  
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High penalties were placed on any changes in the angle of 

attack, , (e.g. in Eqn (27); Q(2,2) = 5.0) and the pitch 

rate, q (Q(3,3) = 10.0). This choice of weighting elements 

was made to penalise any persistent motions involving these 

state variables. At this time, no penalty was applied to any 

changes in structural bending,  and   because the 

contributions of these variables towards the aircraft 

instability were uncertain. The other diagonal elements of 

the matrix, Q, were chosen completely arbitrarily. The three 

controls, F, AD and Touse on Hyperion were penalised 

equally as can be seen from the matrix, G, of Eqn (28). Note 

that the matrix, Q, was positive semidefinite; the matrix, G 

was positive definite as required by the LQR theory 

published in most of the literature.  

 

A solution to the associated Riccati equation was found 

from use of a routine in the Matlab Control System 

Toolbox. The resulting matrix was 

 

               





























−−

−−

−

−

−

−−−−−

−−

=

0059.002.00001.02.49115.0149.2001.0

02.091.00009.016.09891.098.13008.0

0001.00009.0102.60.263005.0244.0103.8-

2.4916.090.2634200.358.814.38520.708-

115.0891.0005.058.8161.41.690.043-

149.298.13244.04.38521.691.35550.593

001.0008.0103.8-0.708-0.043-0.5930.005

P

5-5-

-5

               (29)

 

 

This solution, P, to the algebraic Riccati equation is both 

symmetrical and positive definite. Using Eqn (8), the 

optimal feedback gain matrix can then be calculated. It is 

shown below as Eqn (30). 

 





























−−

−−

−−

−−

−−

−

−−

=

−

−

−

−

6

5

7

5

10750701190

100452409960

106100200030

003003334855

00020053994

002033255743

10768605050

K

...

...

...

...

...

...

...

T

(30)

 

From Eqn (10), all the closed-loop eigen values of the 

optimally controlled aircraft can be deduced to possess 

negative real parts which indicates that the controlled 

aircraft will be dynamically stable. After stabilisation the 

eigen values of Hyperion were found and are shown in 

Table III. 

 
TABLE III HYPERION’S CLOSED-LOOP EIGENVALUES FLYING AT MACH 8.0 AND AT A HEIGHT OF 85000FT 

 

Closed - Loop  

Eigen values 

Natural 

Frequencies 

Damping 

Ratios 
Motion Represented 

1,2=-0.52  j0.6 0.79 rad/s 0.66 Phugoid 

3,4=-0.55  j16.428 16.4 rad/s 0.03 Structural Bending 

5=-5.765 - - Short Period 

6=-205.87 - - Short Period 

7=-1.3288 - - Height 

 
A. Flaps Inoperative 

 

If the flaps of Hyperion completely fail, the first column of 

the matrix, B, is set to null. The other 2 columns represent 

AD and To are still active controls for Hyperion. Using Eqn 

(22), the closed-loop eigen values of the faulty aircraft were 

found and compared with those of the controlled aircraft 

without control failure. 
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BF =

[
 
 
 
 
 
 
0 −1.7159 × 102 1.3329 × 10−2

0 4.7726 × 10−3 −1.672 × 10−7

0 −8.2859 × 10−1 6.909 × 10−5

0 0 0
0 0 0
0 0 0
0 −9.8249 × 10−1 3.4421 × 10−5 ]

 
 
 
 
 
 

                     (31)

 

  
TABLE IV CLOSED-LOOP EIGENVALUES FOR AIRCRAFT WITHOUT AND WITH FLAPS OPERATING 

Closed-loop eigen values for 

aircraft with flaps operating 

Closed-loop eigen values for aircraft 

with flaps inoperative 

1,2 = -0.52  j0.6 1,2 = -0.0006  j0.0555 

3,4 = -0.55  j16.428 3,4 = -0.55  j16.428 

5 = -5.765 5 = -2.5538 

6 = -205.87 6 = -145.37 

7 = -1.3288 7 = 2.4414 (Unstable) 

 

From these eigen values, it is evident that the aircraft has 

become dynamically unstable with the loss of flap control, 

since 7 is a positive real root. The optimal feedback gain 

matrix, K, for the faulty aircraft has to be reconfigured if 

closed-loop stability is to be recovered. 

 

 

To obtain KDR, the following matrices were used: 

 111diagKDO =     (32) 

 1111111diagZ =    (33) 

 111diagM =     (34) 

KDR was found by solving Eqn (21) i.e. 

















−−

−=
−−−

−−−

955

511

DR

108112.7107674.7107199.8

107674.7109997.9106201.6

000

K     (35) 

Eqn (22) was solved for  to find the eigen values of the 

reconfigured closed-loop system.  

The closed-loop eigen values for the reconfigured aircraft 

were found to be 
 

TABLE V CLOSED-LOOP EIGENVALUES FOR HYPERION WITH FLAPS INOPERATIVE 

 

Closed-loop eigen values for aircraft with 

reconfigured system 

1,2 = -0.0004  j0.0555 

3,4 = -0.55  j16.428 

5 = -2.55 

6 = -205.69 

7 = 2.39 (Unstable) 

 

Note that one of the short period mode eigen values was 

unstable. The short period mode eigen values for the 

uncontrolled aircraft were known to correspond to dynamic 

instability and it appears that with the flaps inoperative, it is 

impossible to recover the dynamic stability of the controlled 

aircraft. However, choosing different matrices, Z and M, 

had an impact on recovering the stability of the control-

affected system. 

 

Using different matrices, Z and M, such as those denoted by 

Eqn (36) and (37), resulted in the reconfigured aircraft 

becoming dynamically stable. The matrix, KDR, calculated 

using these matrices is shown in Eqn (38). 

 001100101001diagZ =  (36) 

 0M =      (37) 

















−−

−=
− 1103119.1107599.3

015445.28

000

K
65

DR  (38) 

The closed-loop eigen values of the reconfigured system are 

shown in Table VI. From inspection, it is obvious that the 

closed-loop system with reconfiguration is stable for this 

specific control-input failure.  
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TABLE VI CLOSED-LOOP EIGENVALUES FOR RECONFIGURED HYPERION WITH FLAPS INOPERATIVE 

Closed-loop eigen values from using the 

KDR matrix Eqn (35) 

Closed-loop eigen values from using the 

KDR matrix Eqn (38) 

1,2 = -0.0004  j0.0555 1,2 = -0.116  j3.024 

3,4 =-0.55  j16.428 3,4  =-0.631  j16.272 

5 = -2.55 5 =-2.93 

6 = -205.69 6 =-205.7493 

7 =2.39 (Unstable) 7 =-0.449 (Stable) 

 

Fig. 5 The changes in pitch attitude responses of Hyperion without F failure ()  and with F failure plus reconfiguration system (reconf) 

 

The change in pitch attitude () responses of the aircraft to 

a commanded step input in pitch attitude of 2o (0.0349 

radian) is show in Fig. 3. 

 

That the aircraft dynamic stability is stable can be seen from 

the responses shown in Figure 3. However, the steady-state 

value of the change in pitch attitude from the reconfigured 

aircraft differs from that produced by aircraft without 

control failure. This means that the reconfiguration system 

was unable to perfectly reconstruct the aircraft closed-loop 

dynamics to provide the same response before the control 

failure occurred. The error between the steady-state values, 

was approximately 0.025 radian. Note also that the phugoid 

mode oscillation in the response of the reconfigured aircraft 

showed a period of oscillation of 2.1 seconds and a damping 

ratio of 0.04 but when the flaps were operating, the phugoid 

motion was visible but showed a lower frequency of 

oscillation of 0.8 rad/s and a damping ratio of 0.65.   

response completely settled after 9 seconds whereas reconf 

showed the phugoid oscillation up to 43 seconds before 

settling. A similar oscillation was observed in the responses 

of the other state variables. However, these oscillations 

settled after approximately 40 seconds of simulation time. 

 

In Fig. 4 is shown the change in height (h) response of the 

aircraft when it was subjected to a commanded step change 

in height of 1000ft. 

Fig. 6 The change in height responses with F operating (h) and with F inoperative plus reconfiguration system (hreconf) 
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For a commanded step change in height of 1000ft, there was 

little difference (6.3ft) in the steady-state height responses 

between the aircraft with and without the reconfiguration 

system. The phugoid oscillation is again visible in the 

response of the aircraft with the reconfiguration system but 

it settled in about 25 seconds. The normal acceleration 

response at the centre of gravity (C.G) of the aircraft to the 

same command, was also simulated, and is shown in Fig.7 

Fig. 7 The change in normal acceleration responses at the aircraft C.G withF operating (𝛥𝑛𝑍) and withFinoperative plus reconfiguration (𝛥𝑛𝑍𝑟𝑒𝑐𝑜𝑛𝑓
) 

 

In summary, when this aircraft is flying at a speed of Mach 

8 at 85,000ft, the aircraft was shown to be dynamically 

unstable but with the incorporation of a Stability 

Augmentation System, the dynamic stability could be 

established. If the aircraft control flaps completely 

malfunction at Mach 8, the aircraft is shown to lose this 

stability even though the SAS is still incorporated. But by 

reconfiguring the feedback gains, K, of the SAS using the 

technique shown here, the dynamic stability of the aircraft 

could be regained. The response tests conducted on the 

aircraft shows that the change in state variables is relatively 

small during the configuration process. 

  

The results of the control reconfiguration tests conducted 

using Hyperion longitudinal motion are summarised in 

Table VII. 
 

TABLE VII SUMMARY OF THE CONTROL RECONFIGURATION SYSTEM PERFORMANCE 

Types of Control 

Failures 

Unstable after 

failure 

Stable after 

reconfiguration 

F ✓ ✓ 

AD ✓ ✓ 

To ✓ Not required 

F and AD ✓  

F and To ✓  

AD and To ✓  

 

VI. CONCLUSION 

 

In this paper, the results are presented for a study of a 

reconfigurable closed-loop control system for Hyperion 

when one or more of the aircraft control inputs are 

inoperative. The objective of the reconfiguration system 

was to regain at least the same degree of aircraft dynamic 

stability if any of the control inputs fail. Using the method, 

the optimal feedback gain matrix obtained for the aircraft 

without any control inoperative was distributed 

appropriately. By using this distribution matrix, the work 

effort of the affected control surface is distributed to the 

other control surfaces which were still operating. There are 

three matrices, KDO, Z and M, which can be chosen by the 

designer to design a reconfiguration system that will fully 

recover the aircraft's lost stability. The tests conducted to 

confirm the effectiveness of the reconfiguration system at 

first involved the longitudinal motion of Hyperion. The 

aircraft was assumed to be flying at Mach 8.0 and at a 

height of 85000ft. Using the method discussed, the aircraft 

dynamic stability could be recovered after F failed. Using 

the 2 remaining controls on the aircraft, both from the air-

breathing scramjet engine, it is shown in this paper that the 

longitudinal dynamic stability is not compromised. 

Dynamic stability was also regained when AD failed leaving 

only Fand To operational. It was learned also from the 

study that when To failed, no lost in dynamic stability was 

observed hence, no reconfiguration of controls required. 
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