Friction Stir Welding of Magnesium Alloys: A Review

Authors

  • Kulwant Singh I. K. Gujral Punjab Technical University, Jalandhar, India
  • Gurbhinder Singh Guru Kashi University, Talwandi Sabo, Bathinda, India
  • Harmeet Singh I. K. Gujral Punjab Technical University, Jalandhar, India

DOI:

https://doi.org/10.51983/arme-2016.5.1.2412

Keywords:

Friction stir welding, FSW process parameters, Microstructure, Magnesium alloys

Abstract

The Increasing global demands for energy conservation and environmental protection have encouraged manufacturers to develop lightweight components. Magnesium alloys are characterized by unique properties and offer opportunities for lightweight applications. There is a challenge to join the materials with a variety of applications along with cheaper value and high strength to weight ratio. Friction stir welding (FSW) is a solid state joining process used for light weight alloys. In this article, the recent developments of the FSW of magnesium alloys are reviewed to assist researchers to develop an in-depth understanding of the current state of the Friction Stir Welding of Magnesium Alloys.

References

Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1), 1-78.

Naik, B. S., Chen, D. L., Cao, X., & Wanjara, P. (2013). Microstructure and fatigue properties of a friction stir lap welded magnesium alloy. Metallurgical and Materials Transactions A, 44(8), 3732-3746.

Chowdhury, S. H., Chen, D. L., Bhole, S. D., Cao, X., & Wanjara, P. (2013). Friction stir welded AZ31 magnesium alloy: microstructure, texture, and tensile properties. Metallurgical and materials transactions A, 44(1), 323-336.

Rai, R., De, A., Bhadeshia, H. K. D. H., & DebRoy, T. (2011). Review: friction stir welding tools. Science and Technology of Welding and Joining, 16(4), 325-342.

Nandan, R., DebRoy, T., & Bhadeshia, H. K. D. H. (2008). Recent advances in friction-stir welding–process, weldment structure and properties. Progress in Materials Science, 53(6), 980-1023.

Afrin, N., Chen, D. L., Cao, X., & Jahazi, M. (2008). Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. : A, 472(1), 179-186.

Sunil, B. R., Reddy, G. P. K., Mounika, A. S. N., Sree, P. N., Pinneswari, P. R., Ambica, I., ... & Amarnadh, P. (2015). Joining of AZ31 and AZ91 Mg alloys by friction stir welding. Journal of Magnesium and Alloys.

Choi, D. H., Ahn, B. W., Kim, S. K., Yeon, Y. M., Kim, Y. J., Park, S. K., & Jung, S. B. (2011). Microstructure evaluation of friction stir welded AZ91 with CaO Mg alloy. Materials transactions, 52(4), 802-805.

Cao, X., & Jahazi, M. (2009). Effect of welding speed on lap joint quality of friction stir welded AZ31 magnesium alloy. In Trends in Welding Research: Proceedings of the 8th International Conference, June 1-6, 2008, Callaway Gardens Resort, Pine Mountain, Georgia, USA (Vol. 1, p. 72). ASM International.

Cao, X., & Jahazi, M. (2011). Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy. Materials & Design, 32(1), 1-11.

Singh, I., Cheema, G. S., & Kang, A. S. (2014). An experimental approach to study the effect of welding parameters on similar friction stir welded joints of AZ31B-O Mg alloy. Procedia Engineering, 97, 837-846.

Welding, F. S. (2011). Technical Handbook. ESAB2011.

Micari, F., Buffa, G., Pellegrino, S., & Fratini, L. (2014). Friction Stir Welding as an Effective Alternative Technique for Light Structural Alloys Mixed Joints. Procedia Engineering, 81, 74-83.

Sevvel, P., & Jaiganesh, V. (2014, September). Improving the mechanical properties of friction stir welded AZ31B magnesium alloy flat plates through axial force investigation. In Applied Mechanics and Materials (Vol. 591, pp. 11-14).

Darras, B. M., Khraisheh, M. K., Abu-Farha, F. K., & Omar, M. A. (2007). Friction stir processing of commercial AZ31 magnesium alloy. Journal of materials processing technology, 191(1), 77-81.

Afrin, N., Chen, D. L., Cao, X., & Jahazi, M. (2007). Strain hardening behavior of a friction stir welded magnesium alloy. Scripta Materialia, 57(11), 1004-1007.

Chowdhury, S. M., Chen, D. L., Bhole, S. D., & Cao, X. (2010). Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch. Materials Science and Engineering: A, 527(21), 6064-6075.

Kim, N. J. (2014). Critical Assessment 6: Magnesium sheet alloys: viable alternatives to steels?. Materials Science and Technology, 30(15), 1925-1928.

Sevvel, P., & Jaiganesh, V. (2014). Characterization of Mechanical Properties and Microstructural Analysis of Friction Stir Welded AZ31B Mg Alloy Thorough Optimized Process Parameters. Procedia Engineering, 97, 741-751. [20] Ugender, S., Kumar, A., & Reddy, A. S. (2014). Microstructure and mechanical properties of AZ31B magnesium alloy by friction stir welding. Procedia Materials Science, 6, 1600-1609.

Robson, J. D. (2015). Critical Assessment 9: Wrought magnesium alloys. Materials Science and Technology, 31(3), 257-264.

Singarapu, U., Adepu, K. & Arumalle S. R. (2015). Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy. Journal of Magnesium and Alloys.

Cole, G. S., Long, S., & Osborne, R. J. (2011). Wrought Magnesium Components for Automotive Chassis Applications (No. 2011-01- 0077). SAE Technical Paper.

Babu, S. R., Pavithran, S., Nithin, M., & Parameshwaran, B. (2014). Effect of Tool Shoulder Diameter During Friction Stir Processing of AZ31B Alloy Sheets of various Thicknesses. Procedia Engineering, 97, 800-809.

Chai, F., Zhang, D., & Li, Y. (2015). Microstructures and tensile properties of submerged friction stir processed AZ91 magnesium alloy. Journal of Magnesium and Alloys, 3(3), 203-209.

Woo, W., Choo, H., Prime, M. B., Feng, Z., & Clausen, B. (2008). Microstructure, texture and residual stress in a friction-stirprocessed AZ31B magnesium alloy. Acta materialia, 56(8), 1701- 1711.

Commin, L., Dumont, M., Rotinat, R., Pierron, F., Masse, J. E., & Barrallier, L. (2012). Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds. Materials Science and Engineering: A, 551, 288-292.

Chowdhury, S. H., Chen, D. L., Bhole, S. D., Cao, X., & Wanjara, P. (2012). Lap shear strength and fatigue life of friction stir spot welded AZ31 magnesium and 5754 aluminum alloys. Materials Science and Engineering: A, 556, 500-509

Liu, D., Xin, R., Zheng, X., Zhou, Z., & Liu, Q. (2013). Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60–AZ31. Materials Science and Engineering: A, 561, 419-426.

Kulekci, M. K. (2008). Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology, 39(9-10), 851-865. 7 Friction Stir Welding of Magnesium Alloys: A Review ARME Vol.5 No.1 January - June 2016

Friedrich, H. E., & Mordike, B. L. (2006). Magnesium technology (Vol. 788). Berlin [etc.]: Springer.

Commin, L., Dumont, M., Masse, J. E., & Barrallier, L. (2009). Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta materialia, 57(2), 326-334.

Naik, B. S., Chen, D. L., Cao, X., & Wanjara, P. (2014). Texture development in a friction stir lap-welded AZ31B magnesium alloy. Metallurgical and Materials Transactions A, 45(10), 4333-4349.

Downloads

Published

05-05-2016

How to Cite

Singh, K., Singh, G., & Singh, H. (2016). Friction Stir Welding of Magnesium Alloys: A Review. Asian Review of Mechanical Engineering, 5(1), 5–8. https://doi.org/10.51983/arme-2016.5.1.2412