Carbon Nanomaterials for Tailored Biomedical Applications

Authors

  • Chinedum Mgbemena Department of Mechanical Engineering, Federal University of Petroleum Resources, Delta State, Nigeria
  • Chika Mgbemena Department of Industrial/Production Engineering, Nnamdi Azikiwe University, Anambra State, Nigeria

DOI:

https://doi.org/10.51983/arme-2021.10.2.3167

Keywords:

Biomedical, Carbon Fibre, Carbon Nanotube, Sensors, Tissue Regeneration

Abstract

Carbon Fibre (CF) and Carbon Nanotube (CNT) are typical Carbon nanomaterials that possess unique features which make them particularly attractive for biomedical applications. This paper is a review of the Carbon Fibre (CF) and Carbon Nanotube (CNT) for biomedical applications. In this paper, we describe their properties and tailored biomedical applications. The most recent state of the art in the biomedical application of CFs and CNTs were reviewed.

References

S. Vardharajula et al., “Functionalized carbon nanotubes: Biomedical applications,” International Journal of Nanomedicine, Vol. 7, pp. 5361-5374, 2012. DOI: 10.2147/IJN.S35832.

D. Maiti, X. Tong, X. Mou, and K. Yang, “Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study.,” Front. Pharmacol., Vol. 9, p. 1401, Mar. 2018, DOI: 10.3389/fphar.2018. 01401.

C. M. Tîlmaciu and M. C. Morris, “Carbon nanotube biosensors,” Frontiers in Chemistry, Vol. 3, No. OCT. Frontiers Media S. A., pp. 59, 2015. DOI: 10.3389/fchem.2015.00059.

A. . Amis, “Anterior cruciate ligament replacement. Knee stability and the effects of implants,” J Bone Jt. Surg Br ., Vol. 71, No. 5, pp. 819-824, 1989, Accessed: Jul. 21, 2020. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/2584254/

R. L. Price, K. L. Elias, K. M. Haberstroh, and T. J. Webster, “Small diameter, high surface energy carbon nanofiber formulations that selectively increase osteoblast function,” in Materials Research Society Symposium - Proceedings, 2002, Vol. 711, pp. 261-264. DOI: 10.1557/proc-711-hh3.11.1.

I. Antoniac, Biologically Responsive Biomaterials for Tissue Engineering, Vol. 1, No. 1, Springer New York LLC, 2013. DOI: 10.1007/978-1-4614-4328-5.

R. M. Pilliar, R. Blackwell, I. Macnab, and H. U. Cameron, “Carbon fiber reinforced bone cement in orthopedic surgery,” J. Biomed. Mater. Res., Vol. 10, No. 6, pp. 893-906, 1976, DOI: 10.1002/jbm. 820100608.

M. Blazewicz, “Carbon materials in the Treatment of Soft and Hard Tissue Injuries,” Eur. Cells Mater., Vol. 2, pp. 21-29, 2001.

S. Saha and S. Pal, “Mechanical characterization of commercially made carbon fiber reinforced polymethylmethacrylate,” J. Biomed. Mater. Res., Vol. 20, No. 6, pp. 817-826, 1986, DOI: 10.1002/jbm. 820200612.

R. Petersen, “Carbon Fiber Biocompatibility for Implants.,” Fibers (Basel, Switzerland), Vol. 4, No. 1, Mar. 2016, DOI: 10.3390/fib401 0001.

D. Shi, Ed., Biomaterials and Tissue Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. DOI: 10.1007/978-3-662-06104-6.

B. Ratner, A. Hoffman, F. Schoen, and J. Lemons, “An Introduction to Materials in Medicine,” in Academic Press, Vol. 53, B. Ratner, Ed. California: Academic Press, 1996. DOI: 10.1017/CBO978110741 5324.004.

N. Kumar, A. K. Gangwar, and K. S. Devi, “Carbon Fibers in Biomedical Applications,” in Recent Developments in the Field of Carbon Fibers, InTech, 2018, pp. 85-102. DOI: 10.5772/intech open.75826.

N. Saito et al., “Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development,” Chem. Soc. Rev., Vol. 40, No. 7, pp. 3824-3834, 2011, DOI: 10.1039/C0CS00120A.

M. Balasubramanian, Composite materials and processing. CRC Press, 2013. DOI: 10.1201/b15551.

A. Tiwari and A. N. Nordin, Advanced Biomaterials and Biodevices, Vol. 9781118773635. Wiley Blackwell, 2014. DOI: 10.1002/9781118 774052.

K. Aoki, H. Haniu, Y. A. Kim, and N. Saito, “The Use of Electrospun Organic and Carbon Nanofibers in Bone Regeneration,” Nanomaterials, Vol. 10, No. 3, p. 562, Mar. 2020, DOI: 10.3390/ nano10030562.

J. J. Davis, K. S. Coleman, B. R. Azamian, C. B. Bagshaw, and M. L. H. Green, “Chemical and biochemical sensing with modified single walled carbon nanotubes,” Chem. - A Eur. J., Vol. 9, No. 16, pp. 3732-3739, Aug. 2003, DOI: 10.1002/chem.200304872.

A. A. Bhirde et al., “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano, Vol. 3, No. 2, pp. 307-316, Feb. 2009, DOI: 10.1021/nn80 0551s.

M. Hamidi, A. Azadi, and P. Rafiei, “Hydrogel nanoparticles in drug delivery,” Advanced Drug Delivery Reviews, Vol. 60, No. 15. Elsevier, pp. 1638-1649, Dec. 14, 2008. DOI: 10.1016/j.addr.2008. 08.002.

H. J. Salavagione, G. Martínez, and C. Ballesteros, “Functionalization of multi-walled carbon nanotubes by stereoselective nucleophilic substitution on PVC,” Macromolecules, Vol. 43, No. 23, pp. 9754-9760, Dec. 2010, DOI: 10.1021/ma101780h.

W. D. Callister and D. G. Rethwisch, Fundamentals of Materials Science and Engineering : An Integrated Approach, 4th editio. Wiley, 2011.

K. K. Chawla and K. K. Chawla, “Fibers,” in Composite Materials, Springer New York, 1987, pp. 6-57. DOI: 10.1007/978-1-4757-3912-1_2.

K. K. Chawla, “Carbon Fiber Composites,” in Composite Materials, New York, NY: Springer New York, 1987, pp. 150-163. DOI: 10.1007/978-1-4757-3912-1_8.

K. K. Chawla, “Composite Materials,” in Materials Research and Engineering, B. Ilschner and N. J. Grant, Eds. New York, NY: Springer New York, 1987. DOI: 10.1007/978-1-4757-3912-1.

P. Bhatt and A. Goe, “Carbon Fibres: Production, Properties and Potential Use,” Mater. Sci. Res. India, Vol. 14, No. 1, pp. 52-57, June 2017, DOI: 10.13005/msri/140109.

S. Saha, T. C. Dinadayalane, J. S. Murray, D. Leszczynska, and J. Leszczynski, “Surface reactivity for chlorination on chlorinated (5,5) Armchair SWCNT: A computational approach,” J. Phys. Chem. C, Vol. 116, No. 42, pp. 22399-22410, Oct. 2012, DOI: 10.1021/jp30 7090t.

B. Mensah, H. G. Kim, J.-H. Lee, S. Arepalli, and C. Nah, “Carbon nanotube-reinforced elastomeric nanocomposites: a review,” Int. J. Smart Nano Mater., Vol. 6, No. 4, pp. 211-238, Oct. 2015, DOI: 10.1080/19475411.2015.1121632.

N. Dunne, R. Ormsby, and C. A. Mitchell, “Carbon Nanotubes in Acrylic Bone Cement,” 2013, pp. 173-199. DOI: 10.1007/978-1-46 14-4328-5_8.

T. S. Hin, Engineering Materials for Biomedical Applications, Vol. 1. Massachussets: World Scientific Pub Co Pte Lt, 2004. [Online]. Available: https://books.google.co.ke/books?id=ovPICgAAQBAJ

M. A. Fraga, R. S. Pessoa, D. C. Barbosa, and V. J. T. Airoldi, “One-dimensional carbon nanostructures - From synthesis to nano-electromechanical systems sensing applications-,” Sensors Mater., Vol. 29, No. 1, pp. 39-56, 2017, DOI: 10.18494/SAM.2017.1366.

V. Martinelli, G. Cellot, A. Fabbro, S. Bosi, L. Mestroni, and L. Ballerini, “Improving cardiac myocytes performance by carbon nanotubes platforms,” Frontiers in Physiology, Vol. 4 SEP. Frontiers Media SA, 2013. DOI: 10.3389/fphys.2013.00239.

L. Lacerda et al., “Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes,” Nanomedicine, Vol. 3, No. 2, pp. 149-161, Apr. 2008, DOI: 10.2217/17435889.3.2.149.

R. Rawlins, “The role of carbon fibre as a flexor tendon substitute,” Hand, Vol. 15, No. 2, pp. 145-148, Jun. 1983, DOI: 10.1016/S0072-968X(83)80004-7.

C. Legnani, A. Ventura, C. Terzaghi, E. Borgo, and W. Albisetti, “Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature.,” Int. Orthop., Vol. 34, No. 4, pp. 465-71, Apr. 2010, DOI: 10.1007/s00264-010-0963-2.

Q. Dong et al., “Artificial ligament made from silk protein/Laponite hybrid fibers,” Acta Biomater., Vol. 106, pp. 102-113, Apr. 2020, DOI: 10.1016/j.actbio.2020.01.045.

K. B. Kashuk and E. Haber, “Tendon and ligament prostheses.,” Clin. Podiatry, Vol. 1, No. 1, pp. 131-43, Apr. 1984, Accessed: Aug. 09, 2020. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 6399225

A. M. Looney, J. D. Leider, A. R. Horn, and B. M. Bodendorfer, “Bioaugmentation in the surgical treatment of anterior cruciate ligament injuries: A review of current concepts and emerging techniques,” SAGE Open Med., Vol. 8, p. 2050312120921057, Jan. 2020, DOI: 10.1177/2050312120921057.

G. Guitchounts, J. E. Markowitz, W. A. Liberti, and T. J. Gardner, “A carbon-fiber electrode array for long-term neural recording,” J. Neural Eng., Vol. 10, No. 4, p. 046016, Aug. 2013, DOI: 10.1088/1741-2560/10/4/046016.

K. Sugawara, A. Yugami, and A. Kojima, “Voltammetric Detection of Biological Molecules Using Chopped Carbon Fiber,” Anal. Sci., Vol. 26, No. 10, pp. 1059-1063, 2010, DOI: 10.2116/analsci.26.1059.

V. Martinelli et al., “3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering,” ACS Appl. Bio Mater., Vol. 1, No. 5, pp. 1530-1537, Nov. 2018, DOI: 10.1021/acsabm.8b00440.

S. Garibaldi, C. Brunelli, V. Bavastrello, G. Ghigliotti, and C. Nicolini, “Carbon nanotube biocompatibility with cardiac muscle cells,” Nanotechnology, Vol. 17, No. 2, pp. 391-397, Jan. 2006, DOI: 10.1088/0957-4484/17/2/008.

V. Martinelli et al., “Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes,” Nano Lett., Vol. 12, No. 4, pp. 1831-1838, Apr. 2012, DOI: 10.1021/nl204 064s.

I. Dikbas and J. Tanalp, “An overview of clinical studies on fiber post systems,” The Scientific World Journal, Vol. 2013. Hindawi Publishing Corporation, 2013. DOI: 10.1155/2013/171380.

L. Tarallo, R. Mugnai, R. Adani, F. Zambianchi, and F. Catani, “A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases,” J. Orthop. Traumatol., Vol. 15, No. 4, pp. 277-283, Nov. 2014, DOI: 10.1007/s10195-014-0311-1.

D. Dawson, “Medical applications: A healthy market,” Composites World, Oct. 31, 2010. Accessed: Oct. 26, 2020. [Online]. Available: https://www.compositesworld.com/articles/medical-applications-a-healthy-market

“Multi-degree-of-freedom humanoid manipulator palm-Intelligent Machinery and Robotics-Research and Development-Machinery Industry Network.” https://www.automan.tw/rd/newsContent.aspx? id=3205 (accessed Apr. 21, 2021).

S. Francis, “New 3D-printed prosthetic leg features carbon fiber definitive socket,” 2018. https://www.compositesworld.com/blog/ post/new-3d-printed-prosthetic-leg-features-carbon-fiber-definitive-socket- (accessed Apr. 21, 2021).

“Premium TL2100 Carbon Fiber Casual Orthotics (Ultra Strong)Foot Doctor Orthotics.” https://footdoctororthotics.com/product/material-tier-3-premium-tl2100-carbon-fiber-custom-casual-orthotics/ (accessed Apr. 21, 2021).

K. D. McKeon-Fischer, D. H. Flagg, and J. W. Freeman, “Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering,” J. Biomed. Mater. Res. - Part A, Vol. 99 A, No. 3, pp. 493-499, Dec. 2011, DOI: 10.1002/jbm.a.33116.

D. A. X. Nayagam et al., “Biocompatibility of immobilized aligned carbon nanotubes,” Small, Vol. 7, No. 8, pp. 1035-1042, Apr. 2011, DOI: 10.1002/smll.201002083.

P. P. Pott, M. L. R. Schwarz, R. Gundling, K. Nowak, P. Hohenberger, and E. D. Roessner, “Mechanical Properties of Mesh Materials Used for Hernia Repair and Soft Tissue Augmentation,” PLoS One, Vol. 7, No. 10, Oct. 2012, DOI: 10.1371/journal.pone. 0046978.

C. E. Butler, N. K. Burns, K. T. Campbell, A. B. Mathur, M. V. Jaffari, and C. N. Rios, “Comparison of cross-linked and non-cross-linked porcine acellular dermal matrices for ventral hernia repair,”J. Am. Coll. Surg., Vol. 211, No. 3, pp. 368-376, Sep. 2010, DOI: 10.1016/j.jamcollsurg.2010.04.024.

Z. Liu, X. Zhu, and R. Tang, “Electrospun scaffold with sustained antibacterial and tissue-matched mechanical properties for potential application as functional mesh,” Int. J. Nanomedicine, Vol. 15, pp. 4991-5004, 2020, DOI: 10.2147/IJN.S248970.

C. A. Poland et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nat. Nanotechnol., Vol. 3, No. 7, pp. 423-428, 2008, DOI: 10.1038/nna No.2008.111.

K. Junge, U. Klinge, A. Prescher, P. Giboni, M. Niewiera, and V. Schumpelick, “Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants,” Hernia, Vol. 5, No. 3, pp. 113-118, 2001, DOI: 10.1007/s100290100019.

Z. Liu et al., “Carbon nanotubes as VEGF carriers to improve the early vascularization of porcine small intestinal submucosa in abdominal wall defect repair,” Int. J. Nanomedicine, Vol. 9, No. 1, pp. 1275-1286, Mar. 2014, DOI: 10.2147/IJN.S58626.

C. R. Deeken and S. P. Lake, “Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 74. Elsevier Ltd, pp. 411-427, Oct. 01, 2017. DOI: 10.1016/j.jmbbm. 2017.05.008.

O. Guillaume et al., “Infections associated with mesh repairs of abdominal wall hernias: Are antimicrobial biomaterials the longed-for solution?,” Biomaterials, Vol. 167. Elsevier Ltd, pp. 15-31, Jun. 01, 2018. DOI: 10.1016/j.biomaterials.2018.03.017.

D. H. Jenkins, I. W. Forster, B. McKibbin, and Z. A. Rális, “Induction of tendon and ligament formation by carbon implants,” J. Bone Jt. Surg Br, Vol. 59, No. 1, pp. 53-57, 1977, Accessed: Aug. 09, 2020. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/845228/

S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting : methods and applications, 3rd editio. Wiley, 1997.

A. Hasan, S. Soliman, F. El Hajj, Y. T. Tseng, H. C. Yalcin, and H. E. Marei, “Fabrication and in Vitro Characterization of a Tissue Engineered PCL-PLLA Heart Valve,” Sci. Rep., Vol. 8, No. 1, pp. 8187, Dec. 2018, DOI: 10.1038/s41598-018-26452-y.

M. Tashakori-Miyanroudi et al., “Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair,” Int. J. Biol. Macromol., Vol. 163, pp. 1136-1146, Nov. 2020, DOI: 10.1016/j.ijbiomac.2020.06.259.

H. Li, X. Zou, Q. Xue, N. Egund, M. Lind, and C. Bünger, “Anterior lumbar interbody fusion with carbon fiber cage loaded with bioceramics and platelet-rich plasma. An experimental study on pigs,” Eur. Spine J., Vol. 13, No. 4, pp. 354-358, Jan. 2004, DOI: 10.1007/s00586-003-0647-3.

X. Zou, Q. Xue, H. Li, M. Bünger, M. Lind, and C. Bünger, “Effect of alendronate on bone ingrowth into porous tantalum and carbon fiber interbody devices: An experimental study on spinal fusion in pigs,” Acta Orthop. Scand., Vol. 74, No. 5, pp. 596-603, Oct. 2003, DOI: 10.1080/00016470310018027.

M. Lewandowska-Szumieł, J. Komender, and J. Chłopek, “Interaction between carbon composites and bone after intrabone implantation,” J. Biomed. Mater. Res., Vol. 48, No. 3, pp. 289-296, Jan. 1999, DOI: 10.1002/(SICI)1097-4636(1999)48:3<289::AID-JBM12>3.0.CO;2-L.

K. L. Elias, R. L. Price, and T. J. Webster, “Enhanced functions of osteoblasts on nanometer diameter carbon fibers,” Biomaterials, Vol. 23, No. 15, pp. 3279-3287, Aug. 2002, DOI: 10.1016/S0142-9612 (02)00087-X.

R. L. Price, K. M. Haberstroh, and T. J. Webster, “Enhanced functions of osteoblasts on nanostructed surfaces of carbon and alumina,” Med. Biol. Eng. Comput., Vol. 41, No. 3, pp. 372-375, May 2003, DOI: 10.1007/BF02348445.

R. L. Price, M. C. Waid, K. M. Haberstroh, and T. J. Webster, “Selective bone cell adhesion on formulations containing carbon nanofibers,” Biomaterials, Vol. 24, No. 11, pp. 1877-1887, May 2003, DOI: 10.1016/S0142-9612(02)00609-9.

T. Dvir, B. P. Timko, D. S. Kohane, and R. Langer, “Nanotechnological strategies for engineering complex tissues,” Nature Nanotechnology, Vol. 6, No. 1. Nature Publishing Group, pp. 13-22, 2011. DOI: 10.1038/nnaNo.2010.246.

R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, “Carbon nanotubes - The route toward applications,” Science, Vol. 297, No. 5582. American Association for the Advancement of Science, pp. 787-792, Aug. 02, 2002. DOI: 10.1126/science.1060928.

G. Lekshmi et al., “Recent progress in carbon nanotube polymer composites in tissue engineering and regeneration,” International Journal of Molecular Sciences, Vol. 21, No. 17. MDPI AG, pp. 1-15, Sep. 01, 2020. DOI: 10.3390/ijms21176440.

E. Badakhshanian, K. Hemmati, and M. Ghaemy, “Enhancement of mechanical properties of nanohydrogels based on natural gum with functionalized multiwall carbon nanotube: Study of swelling and drug release,” Polymer (Guildf)., Vol. 90, pp. 282-289, May 2016, DOI: 10.1016/j.polymer.2016.03.028.

S. Y. Madani, F. Shabani, M. V. Dwek, and A. M. Seifalian, “Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment,” International Journal of Nanomedicine, Vol. 8. pp. 941-950, Mar. 01, 2013. DOI: 10.2147/IJN.S36416.

K. Yang and Z. Liu, “In Vivo Biodistribution, Pharmacokinetics, and Toxicology of Carbon Nanotubes,” Curr. Drug Metab., Vol.13, No.8, pp. 1057-1067, Sep. 2012, DOI: 10.2174/138920012802850029.

R. Jha, A. Singh, P. K. Sharma, and N. K. Fuloria, “Smart carbon nanotubes for drug delivery system: A comprehensive study,” Journal of Drug Delivery Science and Technology, Vol. 58. Editions de Sante, p. 101811, Aug. 01, 2020. DOI: 10.1016/j.jddst.2020. 101811.

B. Li et al., “Near infra-red light responsive carbon [email protected] silica for photothermia and drug delivery to cancer cells,” Mater. Today Chem., Vol. 17, Sep. 2020, DOI: 10.1016/j.mtchem. x2020.100308.

A. Merkoçi, M. Pumera, X. Llopis, B. Pérez, M. Del Valle, and S. Alegret, “New materials for electrochemical sensing VI: Carbon nanotubes,” TrAC - Trends Anal. Chem., Vol. 24, No. 9, pp. 826-838, 2005, DOI: 10.1016/j.trac.2005.03.019.

M. E. . Lyons and G. P. Keeley, “Carbon nanotube based modified electrode biosensors. Part 1.Electrochemical studies of the flavin group redox kinetics at SWCNT/glucose oxidase composite modified electrodes | Request PDF,” Int. J. Electrochem. Sci., Vol. 3, No. 8, Jan. 2008, Accessed: Oct. 25, 2020. [Online]. Available: https://www.researchgate.net/publication/279553263_Carbon_nanotube_based_modified_electrode_biosensors_Part_1Electrochemical_studies_of_the_flavin_group_redox_kinetics_at_SWCNTglucose_oxidase_composite_modified_electrodes

S. Tiwari and S. Talreja, “Nanotube: A New Approach to Novel Drug Delivery System,” J. Pharm. Sci. Res., Vol. 12, No. 8, pp. 1024-1028, 2020, Accessed: Oct. 25, 2020. [Online]. Available: https://www.researchgate.net/publication/343985128

M. A. Saleemi, Y. L. Kong, P. V. C. Yong, and E. H. Wong, “An overview of recent development in therapeutic drug carrier system using carbon nanotubes,” Journal of Drug Delivery Science and Technology, Vol. 59. Editions de Sante, p. 101855, Oct. 01, 2020. DOI: 10.1016/j.jddst.2020.101855.

A. V. V. V. Ravi Kiran, G. Kusuma Kumari, and P. T. Krishnamurthy, “Carbon nanotubes in drug delivery: Focus on anticancer therapies,” Journal of Drug Delivery Science and Technology, Vol. 59. Editions de Sante, p. 101892, Oct. 01, 2020. DOI: 10.1016/j.jddst.2020.101892.

N. Suo et al., “Magnetic multiwalled carbon nanotubes with controlled release of epirubicin: An intravesical instillation system for bladder cancer,” Int. J. Nanomedicine, Vol. 14, pp. 1241-1254, 2019, DOI: 10.2147/IJN.S189688.

R. A. MacDonald, B. F. Laurenzi, G. Viswanathan, P. M. Ajayan, and J. P. Stegemann, “Collagen-carbon nanotube composite materials as scaffolds in tissue engineering,” J. Biomed. Mater. Res. - Part A, Vol. 74, No. 3, pp. 489-496, Sep. 2005, DOI: 10.1002/jbm.a.30386.

S. R. Shin et al., “Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators,” ACS Nano, Vol. 7, No. 3, pp. 2369-2380, Mar. 2013, DOI: 10.1021/nn305559j.

C. M. Voge and J. P. Stegemann, “Carbon nanotubes in neural interfacing applications,” Journal of Neural Engineering, Vol. 8, No. 1. Feb. 2011. DOI: 10.1088/1741-2560/8/1/011001.

V. Amenta and K. Aschberger, “Carbon nanotubes: Potential medical applications and safety concerns,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, Vol. 7, No. 3. Wiley-Blackwell, pp. 371-386, May 01, 2015. DOI: 10.1002/wnan.1317.

H. Dumortier et al., “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,”Nano Lett., Vol. 6, No. 7, pp. 1522-1528, Jul. 2006, DOI: 10.1021/nl061160x.

M. I. Sajid, U. Jamshaid, T. Jamshaid, N. Zafar, H. Fessi, and A. Elaissari, “Carbon nanotubes from synthesis to in vivo biomedical applications,” International Journal of Pharmaceutics, Vol. 501, No. 1-2. Elsevier B.V., pp. 278-299, Mar. 30, 2016. DOI: 10.1016/j.ij pharm.2016.01.064.

Z. Liu, J. T. Robinson, S. M. Tabakman, K. Yang, and H. Dai, “Carbon materials for drug delivery & cancer therapy,” Mater. Today, Vol. 14, No. 7-8, pp. 316-323, Jul. 2011, DOI: 10.1016/S13 69-7021(11)70161-4.

C. Fisher, A. E. Rider, Z. Jun Han, S. Kumar, I. Levchenko, and K. Ostrikov, “Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine,” Journal of Nanomaterials, Vol. 2012. 2012. DOI: 10.1155/2012/315185.

G. Gruner, “Carbon nanotube transistors for biosensing applications,” Anal. Bioanal. Chem., Vol. 384, No. 2, pp. 322-335, Jan. 2006, DOI: 10.1007/s00216-005-3400-4.

R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single-and multi-wall carbon nanotube field-effect transistors,” Appl. Phys. Lett., Vol. 73, No. 17, p. 26, 1998.

S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, Vol. 393, No. 6680, pp. 49-52, May 1998, DOI: 10.1038/29954.

M. Mazloum-Ardakani and M. A. Sheikh-Mohseni, “Carbon Nanotubes in Electrochemical Sensors,” in Carbon Nanotubes - Growth and Applications, No. August 2011, InTech, 2011. DOI: 10.5772/20604.

M. Sireesha, V. Jagadeesh Babu, A. S. Kranthi Kiran, and S. Ramakrishna, “A review on carbon nanotubes in biosensor devices and their applications in medicine,” Nanocomposites, Vol. 4, No. 2, pp. 36-57, Apr. 2018, DOI: 10.1080/20550324.2018.1478765.

H. P. Becker et al., “Tenodesis versus carbon fiber repair of ankle ligaments: A clinical comparison,” Clin. Orthop. Relat. Res., No. 325, pp. 194-202, 1996, DOI: 10.1097/00003086-199604000-00023.

C. S. Li, C. Vannabouathong, S. Sprague, and M. Bhandari, “The use of carbon-fiber-reinforced (CFR) peek material in orthopedic implants: A systematic review,” Clin. Med. Insights Arthritis Musculoskelet. Disord., Vol. 8, pp. 33-45, Dec. 2014, DOI: 10.4137/ cmamd.s20354.

K. A. Musalamov et al., “[Matrix endoprostheses for replacement of the tendon-ligament system].,” Vestn. Ross. Akad. meditsinskikh Nauk, No. 8, pp. 41-5, 1994, Accessed: Aug. 09, 2020. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/7524865

B. Rattier, A. Hoffman, F. Schoen, and J. Lemons, “Biomaterials Science: An Introduction to Materials in Medicine,” J. Clin. Eng., Vol. 22, No. 1, p. 26, 1997, DOI: 10.1097/00004669-199701000-00009.

R. Langer and J. P. Vacanti, “Tissue engineering,” Science, Vol. 260, No. 5110, pp. 920-926, 1993, DOI: 10.1126/science.8493529.

A. E. Goodship, S. A. Wilcock, and J. S. Shah, “The development of tissue around various prosthetic implants used as replacements for ligaments and tendons,” Clin. Orthop. Relat. Res., Vol. No. 196, pp. 61-68, 1985, DOI: 10.1097/00003086-198506000-00010.

D. Morris et al., “Use of carbon fibers for repair of abdominal-wall defects in rats.,” undefined, 1990.

S. Suri and C. E. Schmidt, “Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.,” Acta Biomater., Vol. 5, No. 7, pp. 2385-97, Sep. 2009, DOI: 10.1016/j.actbio.2009.05.004.

I. Rajzer, E. Menaszek, L. Bacakova, M. Rom, and M. Blazewicz, “In vitro and in vivo studies on biocompatibility of carbon fibres,” J. Mater. Sci. Mater. Med., Vol. 21, No. 9, pp. 2611-2622, Sep. 2010, DOI: 10.1007/s10856-010-4108-3.

P. X. Ma, “Biomimetic materials for tissue engineering,” Advanced Drug Delivery Reviews, Vol. 60, No. 2. pp. 184-198, Jan. 14, 2008. DOI: 10.1016/j.addr.2007.08.041.

K. Aoki, H. Haniu, Y. A. Kim, and N. Saito, “The Use of Electrospun Organic and Carbon Nanofibers in Bone Regeneration.,” Nanomaterials, Vol. 10, No. 3, pp. 1-14, Mar. 2020, DOI: 10.3390/ nano10030562.

J. Shen et al., “Stepwise 3D-spatio-temporal magnesium cationic niche: Nanocomposite scaffold mediated microenvironment for modulating intramembranous ossification.,” Bioact. Mater., Vol. 6, No. 2, pp. 503-519, Feb. 2021, DOI: 10.1016/j.bioactmat.2020. 08.025.

D. A. Gomez-Gualdrón, J. C. Burgos, J. Yu, and P. B. Balbuena, “Carbon nanotubes: engineering biomedical applications.,” Prog. Mol. Biol. Transl. Sci., Vol. 104, pp. 175-245, 2011, DOI: 10.1016/ B978-0-12-416020-0.00005-X. [110]R. S. Dey, R. K. Bera, and C. R. Raj, “Nanomaterial-based functional scaffolds for amperometric sensing of bioanalytes,” Anal. Bioanal. Chem., Vol. 405, No. 11, pp. 3431-3448, Apr. 2013, DOI: 10.1007/s 00216-012-6606-2.

P.-X. Dong et al., “The Fate of SWCNTs in Mouse Peritoneal Macrophages: Exocytosis, Biodegradation, and Sustainable Retention.,” Front. Bioeng. Biotechnol., Vol. 8, p. 211, Mar. 2020, DOI: 10.3389/fbioe.2020.00211.

G. Cellot, L. Ballerini, M. Prato, and A. Bianco, “Neurons are able to internalize soluble carbon nanotubes: New opportunities or old risks?,” Small, Vol. 6, No. 23, pp. 2630-2633, Dec. 2010, DOI: 10.1002/smll.201000906.

S. Hampel et al., “Carbon nanotubes filled with a chemotherapeutic agent: A nanocarrier mediates inhibition of tumor cell growth,” Nanomedicine, Vol. 3, No. 2, pp. 175-182, Apr. 2008, DOI: 10.2217/17435889.3.2.175.

O. Vittorio, V. Raffa, and A. Cuschieri, “Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells,” Nanomedicine Nanotechnology, Biol. Med., Vol. 5, No. 4, pp. 424-431, Dec. 2009, DOI: 10.1016/j.naNo.2009.02.006.

Downloads

Published

05-11-2021

How to Cite

Mgbemena, C., & Mgbemena, C. (2021). Carbon Nanomaterials for Tailored Biomedical Applications. Asian Review of Mechanical Engineering, 10(2), 24–33. https://doi.org/10.51983/arme-2021.10.2.3167