
Indian Journal of Information Sources and Services
ISSN: 2231-6094 (P) Vol.14, No.1, 2024, pp.39-50

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ijiss-2024.14.1.3926

Analysis of Software-Defined Networking (SDN) Performance in
Wired and Wireless Networks Across Various Topologies,

Including Single, Linear, and Tree Structures
Anil Ram1 and Swarnendu Kumar Chakraborty2

1Research Scholar, 2Associate Professor,
Department of Computer Science and Engineering, National Institution of Technology, Arunachal Pradesh, India

E-mail: anilram.nitap@gmail.com, swarnendu@nitap.ac.in
(Received 13 December 2023; Revised 27 January 2024, Accepted 15 February 2024; Available online 26 February 2024)

Abstract - The increasing prominence of the internet and the
resulting heightened demand for flexibility and agility have
rendered traditional networking solutions inadequate for
meeting current computing needs. Software-Defined
Networking (SDN) emerges as a solution to achieve these goals.
A controller plays a crucial role in determining the success of
SDN. Therefore, it is necessary to assess and compare the
various SDN controllers used across different industries. In
this study, we evaluate the effectiveness of two recognized SDN
controllers, POX and Ryu. Our research employs the Mininet-
Wi-Fi emulator, and we assess the aforementioned controllers
using metrics such as Jitter, throughput, packet loss, and delay,
utilizing the Distributed Internet Traffic Generator (D-ITG).
What sets our research apart is its examination of network
performance across both wired and wireless transmission
modalities. Fast Ethernet was chosen as the speed for the wired
medium, as it had not been studied before. Additionally, the
packet size ranged from 128 to 1,024 bytes. We used single,
linear, and tree topologies for comparison. Our experimental
findings demonstrate that, in the majority of cases, Ryu offers
significantly reduced latency, packet loss, and jitter compared
to POX. Furthermore, the Ryu controller outperforms POX in
terms of throughput, particularly in wireless networks.
Keywords: Software-Defined Networking, Ryu, POX, Delay,
Jitter, Bitrate, Packet Loss

I. INTRODUCTION

Many individuals are concerned about the current hardware-
based network infrastructure because data-forwarding
equipment, such as routers and switches, are frequently

loaded with control requirements and rules. This issue arises
from the fact that conventional networks are now not only
overly difficult to construct and maintain, but also resistant
to the new service revolution (Tivig, 2021). In a typical
network, these proprietary and heterogeneous forwarding
devices are tightly packed alongside the data planes, which
manage data forwarding, and the control Plane (CP), which
act as the intelligences of the networks (Ma, 2022).

The node must be configured and the flow data pathways
must be programmed by the control plane. The control
statistics is utilized to determine data plane (DP) forwarding
at the hardware level once these paths have been designed
and transmitted down to the data plane (Kazi, 2021). The
usual network system uses a dispersed method of network
administration because there is no CP abstraction of the
whole network. Thus, networks have become extra
complicated and challenging to monitor and constitute when
something drives wrong. The idea of SDN has been put out
as a remedy for the issues.

Network management is significantly simplified by the
SDN construction, which enables centrally measured
aptitudes and a comprehensive view of the complete
physical network. This unified entity permits here and now
control of all the essential devices and bids customizable
control of the whole network (Cherian, 2021).

Fig. 1 Comparison between Traditional Networking Structure with SDN Structure

39 IJISS Vol.14 No.1 January-March 2024

A conventional network and an SDN network’s functional
planes differ in Figure 1 (Maaloul, 2018). Even though the
CP manages Flow Control (FC) and upholds a centralized
controller’s global viewpoint of the network; SDN preserves
the DP logic within the network fundamentals.

Switches and other physical layer network components are
given commands by the controller. This specific controller
will be in charge of providing programmable interfaces and
forwarding decision-making capabilities, allows user-
written programs to bring about the function of the network
devices in accordance with a set of high-level rules. These
regulations include network address translation, load
balancing, switching, firewalling, and routing (Askar, 2021).

The controller’s performance determines a substantial
portion of the SDN’s performance. Nowadays, consumers
have a huge selection of controllers to pick from, both free
and paid. For this reason, a thorough evaluation technique is
needed to choose the best controller for each state based on
the routing protocols, topology, workload, and Quality of
Service (QoS) needs, and all of which take a big influence
on the SDN controller’s efficiency. Packet loss, Delay,
throughput, and jitter are a few eminent metrics that can be
castoff to gauge the effectiveness of the recognized SDN
controller (Nóvoa, 2021). In this study, the performance
requirements for Ryu and POX controllers under various
network topologies and workloads will be compared.
Southbound interface (SBI) instructions, such as OpenFlow,
are used by the SDN controller to communicate with the
data plane switches.

In 2008, the first protocol to separate the DP and the CP was
OpenFlow. OpenFlow, the most popular uniform SBI
follows the core SDN fundamental of isolating the DP from
the CP. It outlines the network modifications and data plane
device communication that the controller should do.
OpenFlow switches have mostly replaced traditional
switches because they are less difficult to manage and
program because they are vendor-specific.

II. REVIEW OF LITERATURE

Salman et al., analysed the effectiveness of various
controllers in wireless networks as a result of the good
influence of SDN on altering traditional network principles.
Using the Mininet-Wi-Fi emulator, they compared the
controllers for floodlights, Ryu, POX, open network
operating system (ONOS), and other systems. A network
with four hosts and four access points associated in a linear
architecture was used for the evaluation. According to the
authors, of the four SDN controllers, floodlight has the best
jitter and delay performance. Additionally, they
demonstrated that Ryu and ONOS had the poorest jitter and
delay performances, but Python Network Operating System
(POX) had an average performance across the board
(Salman, 2022).

Yusof et al., calculated SDN’s delay and jitter compared to
traditional networks. Author found that SDN average jitter

and total delay are 3 times less per packet, resulting in
greater network efficiency under different traffic states.
According to their findings, SDN improves network
effectiveness by reducing the network bugs caused by
repetitive attempts to transfer between CP and DP every
time a packet arrives. The distributed CP architecture (DCP)
is also recommended. However, this architecture has its
own challenges, such as the way controllers are positioned
to achieve the best results (Yusof, 2021).

Islam et al., looked into the RYU SDN controller’s
performance on a wired network. To determine the round-
trip time (RTT) of a basic single basic topology made up of
five users, the authors employed the Ping and iperf
programs. Their research investigated different point to
point performance under the transmission and user datagram
protocols (Islam, 2020).

The features of conventional networks and SDN were
compared by Mohammadi, R., et al., Based on throughput,
packet loss and delay, they evaluated the POX controller’s
performance in five topologies. They measured performance
measures using Wireshark. They came to the conclusion
that the tree topology is the worst and the linear topology is
the finest in terms of delay and throughput (Mohammadi, R.,
2021).

On the other hand, Koulouras, I., et al., assessed Ryu’s
presentation in a tree topology with three fans and two
depths (i.e., 4 switches and 9 hosts). They analysed Ryu’s
performance using a selection of metrics, including delay,
bandwidth, jitter, and packet loss. Ping, iperf, and
Wireshark were some of the measurement tools they
employed. Additionally, they recommended that the study
be expanded to include various SDN controllers and
network topologies, such as linear, single, and ring
(Koulouras, I., 2022).

In various network topologies, Mamushiane, L., et al.,
matched the performance of the SDN ONOS and ODL
controllers. The effectiveness of these controllers was
examined in linear, tree, and single topologies. Based on the
D-ITG tool, a comparison was done. They demonstrated
that ODL had extremely low performance, whereas the
ONOS controller had the greatest results across all scenarios
and metrics (Mamushiane, L., 2021).

Finally, Keerthana, B. et al., assessed the RYU SDN
controller’s routine in a wired based set-up. To determine
the throughput and latency of a linear network topology
with a configurable number of the switches (2 switches, 4
switches, 8 switches, 16 switches, 32 switches, and 64
switches), the author used the Cbench and Wireshark
programs. Additionally, he suggested that the research be
expanded to assess additional performance indicators
including as jitter, packet loss, and round-trip time. In both
wired and wireless networks, we compare POX and Ryu
controller performance across different topologies through
various workloads (Keerthana, B. 2022).

40IJISS Vol.14 No.1 January-March 2024

Anil Ram and Swarnendu Kumar Chakraborty

TABLE I COMPARISON BETWEEN AUTHOR’S CONTRIBUTION

Author’s
Wired Network Wireless Network

Delay Jitter Packet Dropped Bitrate Delay Jitter Packet Dropped Bitrate
Salman, M. I. et al., No No No No Yes Yes No No
Yusof, K. M., et al., Yes Yes No No No No No No
Islam, M. T., et al., Yes No No No Yes No No No

Mohammadi, R., et al., Yes No Yes No No No No No
Koulouras, I., et al., Yes Yes Yes No No No No No
Mamushiane, L., et al., Yes No Yes Yes Yes No Yes Yes
Keerthana, B. et al., Yes Yes Yes No Yes Yes Yes No
Proposed scheme Yes Yes Yes Yes Yes Yes Yes Yes

III. THEORETICAL BACKGROUND

A. Software Defined Networking (SDN)

In comparison to conventional network topologies, the SDN
architecture has a variety of benefits, such as the ability to
adjust programmability, traffic engineering policy, great
efficiency, and a centralized view of the network (Singh,
2022). SDN is currently creating a scalable and dynamic
architecture to dramatically advance future networks
(Koulouras, 2022) (Ramdhani, 2021).

Because of its unique architecture, the SDN is independent
of any registered hardware or software. It offers, the
network’s programmability, centralized management, less
agility, more flexibility, operating costs and lower capital,
neutrality, and simple modification. It is being adopted by
academia and major IT firms as a result of its fame (Umar,
2021) (Cabarkapa, 2021). Additionally, network change is
simpler to implement and less prone to error. Dynamically
responding to variations in the process of developing
network servers, the network state, applications, and
services is made simpler. Three levels make up the SDN
network’s architecture: the Application Layer (AL), the
Control Layer (CL), and the Infrastructure (data) Layer
(DL) (Tivig, 2021) (Ma, 2022) (Koulouras, 2022)
(Ramdhani, 2021) (Lucas, 2021) (Aldabbas, 2021) (Kelian,
2023).

Application layer: This layer houses a variety of user-
specific programs. It covers network tools and services used
often by businesses, like load balancing, firewalls, and
security programs (Aldabbas, 2021) (Bhardwaj, 2022).

Control layer: A brainly centralized controller, which is
located at this layer, is the primary element of the SDN
design. The function of this layer is to control how network
devices behave generally. It is capable of sending
commands to any device on the network and has thorough
knowledge of every one of them. Through Northbound APIs,
the control layer receives instructions from the AL and
sends them to the DL. Additionally, it retrieves data from
the DL and relays it back to the AL, including bugs, host
tracks, and statistics (Lucas, 2021) (Prabakaran, 2021)
(Mohammed, 2023).

Fig. 2 SDN Architecture

All networking components that are involved in packet
forwarding on the network are included in the data layer.
This layer’s devices don’t have any decision-making logic;
instead, they simply carry out the commands from the
control layer on the packets that are sent to them. The
southbound APIs handle communication between the CL
and DL. Utilized for communication is OpenFlow (Saputra,
2021) (Prabakaran, 2021) (Balarezo, 2021) (Mohammed,
2023).

B. SDN Controllers

Network designs are being deployed using a number of
open-source SDN controllers, including ONIX, Kandoo,
OVS, Ryu, POX, floodlight, ONOS, ODL, and
OpenDayLight, Trema, Faucet, Beacon, NOX, NodeFlow
(Febrianto, 2021). Fig. 3 (Tseng, 2018) depicts the SDN
controller’s architectural layout. The northbound interface
(NBI) and southbound interface (SBI) modules, together
with a few potential controller-using applications, are
shown in the diagram. The SBI API is used to establish
connections in between DP and CP (Balarezo, 2021)
(Khorsandroo, 2021). This API is also known as OpenFlow
or a substitute in other SDN systems in the case of an Open

41 IJISS Vol.14 No.1 January-March 2024

Analysis of Software-Defined Networking (SDN) Performance in Wired and Wireless Networks Across Various Topologies,
Including Single, Linear, and Tree Structures

SDN controller. The statistics and device tracking and
discovery, the topology, flow management, and device
administration, are the controller’s main responsibilities. A

group of internal controller modules carry out all of these
functions (Mishra, 2021).

Fig. 3 SDN Controller’s Architecture

Given the significance of the role of an SDN controller, a
brief explanation of packet forwarding and routing, the
controller’s two main functions, is warranted. If the current
flow in the table does not contain any information about
host N, the first switch in the SDN environment collects the
very first data flow from the host M and delivers to its SDN
controller when node M and node N begin talking (Mishra,
2021). Based on its applications and services, the controller
then completes the packet-in and encapsulates it to produce

a packet-out. This will be sent back to the switch along with
every other switch between the source and the destination.
Each switch FT has all the data required to make the
optimum routing option. The performance of numerous
SDN controllers in various scenarios has to be compared.
Some of the most prominent SDN controllers are included
in Table II, along with the programming languages and the
platforms they serve that were employed in their
development (Numan, 2019) (Koulouras, 2022).

TABLE II COMPARISON BETWEEN SDN CONTROLLERS
RYU POX OpenDaylight Floodlight Trema

Open Source Yes Yes Yes Yes yes

Interfaces
SB (OpenFlow),
SB Management
(OVSDB, JSON)

SB OpenFlow
SB (OpenFlow),

NB (REST & Java
RPC)

SB OpenFlow, NB
(REST & Java) SB OpenFlow

GUI Yes Yes Yes Yes No

Virtualization Mininet &
OpenvSwitch

Mininet &
OpenvSwitch

Mininet &
OpenvSwitch Mininet & OpenvSwitch Built-in Emulation

Virtual Tool
Transport Layer
Security support Yes Yes Yes Yes Yes

OF support
OF v1.0 v2.0
v3.0 & Nicira

Extensions
OF v1.0 OF v1.0 OF v1.0 OF v1.0

OpenStack Networking
(quantum) No Strong Medium Medium Weak

Rest API No Yes Yes Yes No
Documentation Poor Medium Medium Good Medium
Productivity Moderate Moderate Moderate Moderate High

Platform support Mac, Linux, and
Windows

Linux, Virtual
Machine Linux Mac, Linux, and

Windows Linux

Modularity Medium Medium High High Medium

Language support Python Python Java Java + any language that
uses REST C/Ruby

42IJISS Vol.14 No.1 January-March 2024

Anil Ram and Swarnendu Kumar Chakraborty

C. POX

POX is an OpenFlow-compatible, Python-based open-
source SDN emulator or controller for building SDN
technology. A POX SDN controller can also create load
balancers, firewalls, switches, and OpenFlow devices.
When the OpenFlow protocol is present, the forwarding
devices are directly controlled and accessed by the POX
controller. It’s quick and easy, which makes it perfect for
research, experiments, and demonstrations (Salman, 2022)
(Latif, 2022). The foundation of POX controller is the
understanding that every SDN network operation and device
is a separate component that can be utilized at anytime and
anyplace. It must handle all forms of interaction between
apps and SDN devices (Salman, 2022).

D. RYU

Developed solely in Python, the Ryu controller is a
component-based and open-source, SDN system (Keerthana,
2022). It offers an event-driven user interface design style in
which the program’s flow is determined by events and
practices the OF protocol to connect with the switches to
alter by what means the network manages traffic
movements. Event classes that refer to messages received
from associated switches are exported by the module
ryu.controller.ofp_event. Control applications and SDN
network management are made simple to implement by
Ryu’s software components with well-defined APIs. The
designed network can also be seen in the GUI. A collection
of important Ryu components for SDN applications
includes OpenFlow representational API (OFREST),
Firewall, OpenStack, and Quantum (Ali, 2023). The
primary objectives of these applications are to collect
network intelligence through the use of a controller, run
algorithms for analytics, and use the controller to compose
new rules. Furthermore, Ryu supports several protocols,
such as OpenFlow, OF-config, and Netconf (RFC 6241), for
network infrastructure management. The Ryu and all
OpenFlow versions (1.0 to 1.5) work together flawlessly
(Salman, 2022) (Keerthana, B. 2022) (Askar, 2021).

IV. METHODOLOGY

This research framework aims to assess the effectiveness of
SDNs, in particular for Single, Linear, and Tree Topologies
to W-N network and W-L network. To optimize network
design and deployment, this framework aims to provide
insight into the performance and management of these
topologies. Under different scenarios, measure the
performance metrics like delay, bitrate, jitter, and packet
dropped. To identify strengths and weaknesses, compare the
performance of single, linear, or tree topologies.

The simulation environment will be described in this section.
There will also be demonstrations of single, linear, and tree
network topologies. Finally, the procedure for evaluating
and contrasting four separate characteristics (packet loss,
jitter, delay, and bitrate) will be explained.

A. Simulation Environment

A single personal computer (PC) with an RYZEN 5 2.90
GHz CPU, 4 cores, 6 logical processors, and 8 GB of RAM
was used to build the test environment detailed in this
section. The computer had installed VMware Workstation
Pro, and Ubuntu was used to build the virtual machine. 1
core, 6 GB of RAM, and 40 GB space were used to build
the virtual machine. A Mininet-Wi-Fi emulator with Ryu
and POX controller implementations is included in the VM.
Because Mininet-Wi-Fi is an open source and offers simple
modelling of connections, nodes, all network components,
and controllers, it is widely utilized. On the other hand,
because both Ryu and POX employ Python as their
programming language, those controllers were chosen.

B. Topology

Building an SDN topology using hosts, switches, and a
Mininet-Wi-Fi emulator is part of the evaluation process.
The performances of three topologies are examined. Figure
shows the topologies chosen for Wired Network (W-N) and
Wireless Networks (WL-N), including single, linear, and
tree topologies.

Single: Only one switch is utilized in a single topology, and
all hosts are connected to it. Figures 4(a) and 4(b) depict the
emulated single 12-host network.

Linear: Each OpenFlow-capable switch in a linear topology
is connected in a straight line, much like in bus architecture.
Figures 4(c) and 4(d) show an illustrative linear network
with eight switches and ten hosts.

Tree: The concepts “depth” and “fan-out” determine the
topology of a tree. Fan-out represents the numeral of output
ports that hosts or switches will connect to, whereas depth
describes the number of switch levels. A simulated tree
network with a fan-out and depth of 2 (15 switches and 16
hosts) is shown in Figures 4(e) and 4(f).

Each node has been given a distinct MAC address and an IP
address from the address space (10.0.0.0/24). The IP/MAC
addresses for node h1 and node h12 are
(10.0.0.1/00:00:00:00:00:01 and
(10.0.0.12/00:00:00:00:00:12, respectively).

The OpenFlow switches and access points were situated 100
meters away from the hosts. Fast Ethernet was selected for
the wired connection, while 802.11g was selected for the
wireless. The virtual IP address (127.0.0.1) was castoff to
make access points and switches link to the POX controller
or Ryu. Access points and Switches that implement OF v1.0
are the devices used to transfer traffic flow from one host to
another. Because the POX controller only supports this
version of Openflow and in the interest of fair comparison,
this version was utilized.

43 IJISS Vol.14 No.1 January-March 2024

Analysis of Software-Defined Networking (SDN) Performance in Wired and Wireless Networks Across Various Topologies,
Including Single, Linear, and Tree Structures

 (a) (b)

 (c) (d)

(e) (f)
Fig. 4 (a) Single W-N topology (b) Single WL-N topology (c) Linear W-N topology (d) Linear WL-N topology

(e) Tree W-N topology (f) Tree WL-N topology

C. Metrics

When the network architecture was put into practice, DITG
instructions were used to calculate key network presentation

factors such as latency, packet loss, bitrate, jitter, and jitter.
Table III described the parameters used in this research
work.

TABLE III DESCRIPTIONS OF SIMULATION PARAMETERS
Parameter Name Description

Tools used D-ITG, Mininet, Mininet-WiFi
Network type Wired and Wireless
Network packet size Wired- 106 pks/s, Wireless- 106 pk/s

Protocol TCP, UDP
/ITGSend -T UDP -m rttm -a
10.0.0.8 -c 128 -C 1000008 -t 10008

D-ITG command line to investigate the
performance.

Controller Used RYU

API used NBI, SBI, OpenFlow

44IJISS Vol.14 No.1 January-March 2024

Anil Ram and Swarnendu Kumar Chakraborty

The initial and end nodes in each Mininet-WiFi topology
will be selected and set using the standard terminal emulator
Xterm after each topology has been completed. Host Y acts
as the server in both trials, while Host X acts as the client.
Host X is configured using the D-ITG command lines that is
“. /ITGSend -T UDP -m rttm -a 10.0.0.8 -c 128 -C 1000008
-t 10008” to start the performance investigation. While the
“. /ITGRecv” command is being used to setup host Y.

For both controllers, each procedure was run twice in
independent test sets. The W-N’s constant rate was set to

106 packets per second (pks/s), while the WL-N’s constant
rate was also set to 105 pks/s.

The UDP protocol was used to measure packet drop, jitter,
and delay. On the other hand, TCP was used in place of
UDP when the D-ITG command was used to measure
bitrate. In each stage, we perform tests ten times. The final
result is the average of the ten outcomes. Additionally, we
gradually raise the packet size by a multiple of 2 from 128
to 1,024. Table IV contrasts the studies reviewed in section
2 with our research technique.

TABLE IV DIFFERENT METHODOLOGY COMPARISON
Reference Topology Controller Tools Performance

Salman, M. I. Linear RYU, POX,
Floodlight, ONOS Ping, iperf Throughput, Jitter, Delay

Numan, P. E., et al., Single POX Ping, iperf RTT, Jitter, Delay

Islam, M. T., et al., Single Ryu Ping, iperf Jitter, Delay
Mohammadi, R., et al., Single, Linear POX Wireshark Throughput, Packet loss, Delay

Keerthana, B., et al., Tree Ryu Wireshark, Ping,
iperf

Throughput, Jitter, Delay,
Packet loss

Mamushiane, L., et al., Single,
Linear, Tree ONOS, ODL D-ITG Throughput, Jitter, Delay,

Packet loss

Koulouras, I., et al., Single, Linear Ryu Cbench,
Wireshark Throughput, Delay

Our research Single,
Linear, Tree Ryu, POX D-ITG, Mininet Throughput, Jitter, Delay,

Packet loss, Bitrate

V. RESULTS AND DISCUSSION

A. Average delay

According to Figure 5, Ryu outperforms POX in the three
topologies of wired networks, particularly in the linear and
tree topologies. In comparison to POX, where the latency
often reduces in tree and linear topologies, furthermore it

demonstrated that the delay in Ryu grows as the packet size
increases. Figure 6 demonstrates that in wireless networks,
both controllers achieve about identical performance, with
the poorest for 512 bytes and the greatest result occurring
for packet sizes of 128 bytes. SDN performs better in small-
size packet applications in our settings. Additionally, the
POX controller performs better with tree topology than
linear.

Fig. 5 Average Delay in W-N

0

0.5

1

1.5

2

2.5

POX RYU POX RYU POX RYU

Single Linear Tree

128 Bytes

256 Bytes

512 Bytes

1024 BytesAv
er

ag
e

De
la

y
(m

s)

45 IJISS Vol.14 No.1 January-March 2024

Analysis of Software-Defined Networking (SDN) Performance in Wired and Wireless Networks Across Various Topologies,
Including Single, Linear, and Tree Structures

Fig. 6 Average Delay in WL-N

B. Average Jitter

Figure 7 demonstrates that RYU has decreased jitter as the
packet size increases although the jitter is amplified by a
POX SDN controller, but it’s specifically once packet size
drops. Both controllers’ jitter exhibits delay-like behavior.

As seen in Figure 8, the average jitter in wireless networks
is the same for both controllers. Additionally, with a POX
controller, tree topology performs better than linear. 128
bytes was shown to be the ideal packet size for tenders that
require less jitter, whereas 1,026 bytes is the worst.

Fig. 7 Average Jitter in W-N

0

0.5

1

1.5

2

2.5

POX RYU POX RYU POX RYU

Single Linear Tree

128 Bytes

256 Bytes

512 Bytes

1024 Bytes

Av
er

ag
e

De
la

y
(m

s)

0

0.5

1

1.5

2

2.5

POX RYU POX RYU POX RYU

Single Linear Tree

128 Bytes

256 Bytes

512 Bytes

1024 Bytes

Av
er

ag
e

Jit
te

r (
m

s)

46IJISS Vol.14 No.1 January-March 2024

Anil Ram and Swarnendu Kumar Chakraborty

Fig. 8 Average Jitter in WL-N

C. Dropped Packet

Figure 9 illustrates how Ryu outperforms POX for the
packet drop in all topologies. Additionally, trees perform
improved than linear in the POX SDN controller. Figure 10

demonstrates that when the packet size is 1,026 bytes, the
wickedest packet drop in the POX SDN controller with
linear network topology is 13%, whereas the best packet
drop is 4.5% for packet sizes of 256 bytes.

Fig. 9 Packet dropped in W-N

0

0.5

1

1.5

2

2.5

POX RYU POX RYU POX RYU

Single Linear Tree

128 Bytes

256 Bytes

512 Bytes

1024 BytesAv
er

ag
e

Jit
te

r (
m

s)

0

0.5

1

1.5

2

2.5

POX RYU POX RYU POX RYU

Single Linear Tree

128 Bytes

256 Bytes

512 Bytes

1024 Bytes

Pa
ck

et
 D

ro
pp

ed
 (%

)

47 IJISS Vol.14 No.1 January-March 2024

Analysis of Software-Defined Networking (SDN) Performance in Wired and Wireless Networks Across Various Topologies,
Including Single, Linear, and Tree Structures

Fig. 10 Packet dropped in WL-N

D. Average Bitrate

Figure 11 demonstrates that in all situations, the average
bitrate for Ryu and POX is nearly identical. Furthermore, it
is shown that linear topology achieves higher bitrate than

tree in POX scenarios. Figure 12 displays the 128-byte
packet size is the most perverse in the wireless network. In
wireless scenarios, Ryu’s average bitrate is superior to
POX’s, and both Ryu and POX controllers give the tree
topology a higher bitrate than linear.

Fig. 11 Average bitrate in W-N

0

0.5

1

1.5

2

2.5

POX RYU POX RYU POX RYU

Single Linear Tree

128 Bytes

256 Bytes

512 Bytes

1024 BytesPa
ck

et
 D

ro
pp

ed
 (%

)

0
5

10
15
20
25
30
35
40
45
50

POX RYU POX RYU POX RYU

128 Bytes

512 Bytes

256 Bytes

1024 Bytes

POX RYU POX RYU POX RYU

128 Bytes

512 Bytes

256 Bytes

POX RYU POX RYU POX RYU

128 Bytes

512 Bytes

256 Bytes

Single Linear Tree

Av
er

ag
e

Bi
tr

at
e

(M
bp

s)

48IJISS Vol.14 No.1 January-March 2024

Anil Ram and Swarnendu Kumar Chakraborty

Fig. 12 Average bitrate in WL-N

VI. CONCLUSION

There has been significant technological progress in recent
years, with one of the most important areas being the
application of SDN in traffic analysis. Traffic analysis
stands out as a key aspect within SDN’s application sector.
As the network’s core function, the SDN controller analyzes
and tracks authentic data traffic. Monitoring and analyzing
real-time data traffic are crucial in any networking strategy
to track the movement of data packets between users. This
study involves several comparisons. Firstly, the
performance of the two most well-known SDN controllers,
Ryu and POX, is evaluated. Secondly, various topologies,
including tree and linear, were implemented for comparison.
Lastly, several packet sizes were contrasted, providing
researchers with insights into the ideal packet sizes for
specific applications. An objective experimental
investigation based on active measurement was conducted
using the Mininet-Wi-Fi emulator and the D-ITG tool.
Metrics such as bitrate, packet loss, throughput, jitter, and
delay were used to assess performance. According to the
evaluations, Ryu consistently performed the best across all
scenarios and measures. While POX’s performance was
relatively poor, the data collected indicated that Ryu tends
to experience less jitter and delay in wireless networks as
the number of packets decreases, unlike the POX controller.
The Ryu SDN controller experienced a 0% packet drop
while measuring packet loss with 512-byte packet sizes in
both tree and linear topologies. In contrast, the POX SDN
controller experienced approximately 32% packet loss with
128-byte packets in wireless network topology, marking the
worst-case scenario among all configurations. Future testing
may involve assessing the controller’s security and
robustness, particularly in sophisticated networks with
multipath connections.

REFERENCES

[1] Aldabbas, H., & Amin, R. (2021). A novel mechanism to handle
address spoofing attacks in SDN based IoT. Cluster Computing,
24(4), 3011-3026.

[2] Ali, M., Jehangiri, A. I., Alramli, O. I., Ahmad, Z., Ghoniem, R. M.,
Ala’anzy, M. A., & Saleem, R. (2023). Performance and Scalability
Analysis of SDN-Based Large-Scale Wi-Fi Networks. Applied
Sciences, 13(7), 4170.

[3] Askar, S., & Keti, F. (2021). Performance Evaluation of different
SDN controllers: A Review.

[4] Balarezo, J. F., Wang, S., Chavez, K. G., Al-Hourani, A., &
Kandeepan, S. (2022). A survey on DoS/DDoS attacks mathematical
modelling for traditional, SDN and virtual networks. Engineering
Science and Technology, an International Journal, 31, 101065.

[5] Bhardwaj, S., & Panda, S. N. (2022). Performance evaluation using
RYU SDN controller in software-defined networking environment.
Wireless Personal Communications, 122(1), 701-723.

[6] Cabarkapa, D., & Rancic, D. (2021). Performance Analysis of Ryu-
POX Controller in Different Tree-Based SDN Topologies. Advances
in Electrical & Computer Engineering, 21(3).

[7] Cherian, M., & Verma, S. (2021). Integration of IoT and SDN to
mitigate DDoS with RYU controller. In Computer Networks, Big
Data and IoT: Proceedings of ICCBI 202, 673-684. Springer
Singapore.

[8] Febrianto, A., & Saputra, N. (2021). Pelatihan media pembelajaran
inovatif dengan videoscribe bagi guru SDN Malangrejo. Community
Empowerment, 6(1), 24-28.

[9] Islam, M. T., Islam, N., & Refat, M. A. (2020). Node to node
performance evaluation through RYU SDN controller. Wireless
Personal Communications, 112, 555-570.

[10] Kazi, N. M., Suralkar, S. R., & Bhadade, U. S. (2021). Evaluating the
performance of pox and ryu sdn controllers using mininet. In Data
Science and Computational Intelligence: Sixteenth International
Conference on Information Processing, ICInPro 2021, Bengaluru,
India, October 22–24, 2021, Proceedings 16 (pp. 181-191). Springer
International Publishing.

[11] Keerthana, B., Balachandra, M., Hebbar, H., & Muniyal, B. (2022).
Performance Comparison of Various Controllers in Different SDN
Topologies. In Expert Clouds and Applications: Proceedings of
ICOECA 2021 (pp. 297-309). Springer Singapore.

[12] Kelian, V. H., Warip, M. N. M., Ahmad, R. B., Ehkan, P., Zakaria, F.
F., & Ilyas, M. Z. (2023). Toward Adaptive and Scalable Topology in
Distributed SDN Controller. Journal of Advanced Research in
Applied Sciences and Engineering Technology, 30(1), 115-131.

0
5

10
15
20
25
30
35
40
45
50

POX RYU POX RYU POX RYU

128 Bytes

512 Bytes

256 Bytes

POX RYU POX RYU POX RYU

128 Bytes

512 Bytes

256 Bytes

POX RYU POX RYU POX RYU

128 Bytes

512 Bytes

256 Bytes

1024 Bytes

Single Linear Tree

Av
er

ag
e

Bi
tr

at
e

(M
bp

s)

49 IJISS Vol.14 No.1 January-March 2024

Analysis of Software-Defined Networking (SDN) Performance in Wired and Wireless Networks Across Various Topologies,
Including Single, Linear, and Tree Structures

[13] Khairi, M. H. H., Ariffin, S. H. S., Latiff, N. M. A. A., Yusof, K. M.,
Hassan, M. K., Al-Dhief, F. T., ... & Hamzah, M. (2021). Detection
and classification of conflict flows in SDN using machine learning
algorithms. IEEE Access, 9, 76024-76037.

[14] Khorsandroo, S., Sánchez, A. G., Tosun, A. S., Arco, J. M., &
Doriguzzi-Corin, R. (2021). Hybrid SDN evolution: A
comprehensive survey of the state-of-the-art. Computer Networks,
192, 107981.

[15] Koulouras, I., Margariti, S. V., Bobotsaris, I., Stergiou, E., & Stylios,
C. (2022, November). On the Performance of SDN Controllers in
Real World Topologies. In 2022 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN)
(pp. 143-148). IEEE.

[16] Latif, S. A., Wen, F. B. X., Iwendi, C., Li-Li, F. W., Mohsin, S. M.,
Han, Z., & Band, S. S. (2022). AI-empowered, blockchain and SDN
integrated security architecture for IoT network of cyber physical
systems. Computer Communications, 181, 274-283.

[17] Ma, J., Jin, R., Dong, L., Zhu, G., & Jiang, X. (2022, May).
Implementation of SDN traffic monitoring based on Ryu controller.
In International Symposium on Computer Applications and
Information Systems (ISCAIS 2022) (Vol. 12250, pp. 203-212). SPIE.

[18] Maaloul, R., Taktak, R., Chaari, L., & Cousin, B. (2018). Energy-
aware routing in carrier-grade Ethernet using SDN approach. IEEE
Transactions on Green Communications and Networking, 2(3),
844-858.

[19] Mamushiane, L., & Shozi, T. (2021, May). A QoS-based evaluation
of SDN controllers: ONOS and OpenDayLight. In 2021 IST-Africa
Conference (IST-Africa) (pp. 1-10). IEEE.

[20] Mishra, A., Gupta, N., & Gupta, B. B. (2021). Defense mechanisms
against DDoS attack based on entropy in SDN-cloud using POX
controller. Telecommunication systems, 77, 47-62.

[21] Mohammadi, R., Nazari, A., Nassiri, M., & Conti, M. (2021). An
SDN-based framework for QoS routing in internet of underwater
things. Telecommunication Systems, 78(2), 253-266.

[22] Mohammed, G. A., & Aldabbagh, O. A. I. (2023). A Comparative
Evaluation of the Performance of SDN Controllers (ONOS) using
DOCKER Container.

[23] Nóvoa, L., Tavares, V., Nahum, C., Lins, S., & Klautau, A. (2021,
July). Middleware implementation for RYU SDN Controller to
manage switches in a C-RAN scenario. In Anais do XLVIII Seminário
Integrado de Software e Hardware (pp. 19-29). SBC.

[24] Nóvoa, L., Tavares, V., Nahum, C., Lins, S., & Klautau, A. (2021,
July). Middleware implementation for RYU SDN Controller to
manage switches in a C-RAN scenario. In Anais do XLVIII Seminário
Integrado de Software e Hardware, 19-29, SBC.

[25] Numan, P. E., Yusof, K. M., Marsono, M. N. B., Yusof, S. K. S.,
Fauzi, M. H. B. M., Nathaniel, S., & Baharudin, M. A. B. (2019). On
the latency and jitter evaluation of software defined networks.
Bulletin of Electrical Engineering and Informatics, 8(4), 1507-1516.

[26] Prabakaran, D., Nizar, S. M., & Kumar, K. S. (2021). Software-
defined network (SDN) architecture and security considerations for
5G communications. In Design methodologies and tools for 5G
network development and application (pp. 28-43). IGI global.

[27] Ramdhani, M. D., Sugiarto, B., & Rukmana, A. (2021). Simulasi
Jaringan SDN menggunakan controller RYU Pada Mininet Dengan 5
Topologi Jaringan. Jurnal FUSE-Teknik Elektro, 1(2), 101-110.

[28] Salman, M. I. (2022). A Hybrid SDN-Multipath transmission for a
Reliable Video Surveillance System. Association of Arab Universities
Journal of Engineering Sciences, 29(2), 46-54.

[29] Saputra, Y. (2021). Analisis Performansi Software Defined Network
(SDN) Controller Floodlight, Pox, Ryu, Dan Odl Pada Topologi
Jaringan Universitas Islam Riau (Doctoral dissertation, Universitas
Islam Riau).

[30] Singh, A., Kaur, N., & Kaur, H. (2022). Extensive performance
analysis of OpenDayLight (ODL) and Open Network Operating
System (ONOS) SDN controllers. Microprocessors and
Microsystems, 95, 104715.

[31] Tivig, P. T., Borcoci, E., & Brumaru, A. (2021, October). Layer 3
Forwarder Application-Implementation Experiments Based on Ryu
SDN Controller. In 2021 International Symposium on Networks,
Computers and Communications (ISNCC) (pp. 1-6). IEEE.

[32] Tseng, Y., Naït‐Abdesselam, F., & Khokhar, A. (2018). A
comprehensive 3‐dimensional security analysis of a controller in
software‐defined networking. Security and Privacy, 1(2), e21.

[33] Umar, R., Riadi, I., & Kusuma, R. S. (2021). Mitigating sodinokibi
ransomware attack on cloud network using software-defined
networking (SDN). International Journal of Safety and Security
Engineering, 11(3), 239-246.

50IJISS Vol.14 No.1 January-March 2024

Anil Ram and Swarnendu Kumar Chakraborty

