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Abstract - The deep Convolutional Neural Network (CNN) 
architecture used in this research study provides a proof of 
concept for crack detection on the metallic surface of a hex nut. 
The goal is to create an automated receiving inspection process 
to supplement human inspections conducted on-site. 
Conventional image processing techniques (IPTs) have been 
extensively used for mechanical infrastructure fault detection. 
These techniques focus on image modification to extract typical 
features, such as surface fractures in materials like steel and 
concrete. However, obstacles presented by a variety of real-
world variables, such as changes in lighting and shadows, make 
it difficult to use IPTs. Our suggested vision-based method 
employs a deep learning CNN to overcome these difficulties, 
eliminating the need to explicitly compare fault features. CNNs 
are more resilient to shifting real-world situations than IPTs 
since they are naturally trained to identify characteristics in 
images. Following training on a dataset of 1081 images with 
dimensions of 256 x 256 pixels, the VGG16 CNN architecture 
achieved an impressive accuracy of around 94.17%. Additional 
CNN architectures, including ResNet, MobileNet, AlexNet, and 
LeNet-5, are employed to assess and compare fault detection 
accuracies in order to select the most appropriate architecture 
for the model. To evaluate the robustness and flexibility of the 
suggested method in various situations, we conducted tests with 
206 images from an alternative structure that was not part of 
the training dataset. These images depicted a range of 
circumstances, such as intense light patches and tiny fissures. 
The outcomes showed that our proposed method outperforms 
current approaches, highlighting its usefulness in practical 
situations involving the identification of metallic defects. 
Keywords: Convolutional Neural Network, Crack Detection, 
Automated Receiving Inspection, Image Processing Techniques, 
Vision-Based Method, Deep Learning, VGG16 CNN, ResNet, 
MobileNet, AlexNet, LeNet-5 

I. INTRODUCTION

The structural integrity of numerous engineering systems, 
including equipment, structures, and bridges, hinges 
significantly on the condition of nuts. Timely detection of 
cracks in nuts is imperative to avert catastrophic failures and 
uphold the safety of these structures (Johnston, 2019). In 
recent years, Convolutional Neural Networks (CNN) have 
emerged as highly effective tools for image-based defect 
identification, owing to advancements in computer vision 
and deep learning (Le Cun et al., 2015). This study delves 
into the application of CNN for crack detection in nuts, with 

the primary objective being the identification and localization 
of cracks, accompanied by an assessment of the strengths and 
weaknesses of different approaches. 

Deep learning models are preferred for crack detection due to 
their ability to autonomously extract hierarchical features 
from data, obviating the need for explicit feature engineering 
(Bengio et al., 2013). Unlike traditional methods that often 
rely on handcrafted features, CNN can learn relevant features 
directly from the data through convolutional layers, 
potentially offering more accurate and robust crack detection 
in nuts. 

The identification of strengths and weaknesses inherent in 
each model is pivotal for guiding the selection of an 
appropriate approach tailored to specific application 
requirements. Moreover, this study contributes to the 
expanding body of research aimed at enhancing efficiency 
and reliability in defect detection (Smith et al., 2020). 

A comprehensive overview of relevant work in the fields of 
defect detection and deep learning applications precedes the 
methodology section. The methodology entails detailing the 
dataset used, model architectures, and training procedures. 
Subsequently, results will be presented and analyzed. Finally, 
the conclusion will summarize major findings and propose 
directions for further investigation. 

II. SUMMARY OF THE PROPOSED MODEL

The proposed model encompasses a comprehensive 
workflow aimed at leveraging CNN for crack detection in 
nuts. High-resolution images of metallic surfaces on nuts, 
capturing various image fluctuations such as illumination and 
shadows, are obtained using a camera. These images are then 
utilized to train a CNN classifier, with cracks defined as 
imperfections visible to the naked eye in the pictures. 

The dataset comprises 1287 raw images, including 1081 
images for training and validation and 206 images for testing, 
each with varying pixel resolutions. To establish a database, 
the 1081 images are manually re-sized to small dimensions 
(256 x 256 pixels), from which cropped images are randomly 
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selected to construct training and validation sets. The CNN 
classifier is subsequently trained using the prepared training 
image set to distinguish between fractured and intact metallic 
surface images. 

III. LITERATURE REVIEW

The focus of the literature review is on employing CNN for 
defect identification in industrial contexts, particularly about 
metal nuts. It addresses issues with conventional techniques 
and investigates the effectiveness of CNN in feature 
extraction and pattern recognition. Our understanding lays 
the path for further investigation into issues related to defect 
detection and innovations, particularly about metal nuts 
(Sauter et al., 2021). 

Convolutional Neural Networks (CNN) are robust computer 
vision techniques that facilitate the vision-based defect crack 
detection process. Our focus is on the latest advancements in 
CNN-based crack identification in varied lighting and 
shadow conditions. To enhance computational capacity and 
identify cracks faster than human labour, we evaluate manual 
procedures, image processing techniques (IPTs), and 
machine learning approaches (Cha et al., 2017). 

Deep learning contributes by utilizing a pre-trained model to 
extract the features and classify the defects in steel and metal. 
Utilizing LeNet, AlexNet, and VGG16, we were able to 
identify the flaws with progressively higher accuracy. 
VGG16 models have achieved up to 93% accuracy, and this 
accuracy can be increased by using more epochs. The lack of 
data in this case presents an over-fitting problem. Combining 
this with currently available technologies can assist us in 
determining the kinds of problems and the steps that must be 
taken to mitigate damage (Piwal et al., 2023). 

ResNet 152 deep residual neural network architecture is the 
classifier that we may use to identify abrasions, scratches, 
and scrapes on metal surfaces. Based on test data, it provides 
us with a classification accuracy of 97.14%. During our 
training process, we have determined which augmentation 
circumstances have the biggest impact on enhancing the 

model’s accuracy metrics. Research has also been done on 
damage peculiarities that make it difficult to identify them. 
As Python is a quick programming language, we used the 
“Keras” and “TensorFlow” packages to construct our 
recommended solution. Enhancing the method for examining 
metal surface operations and adjustment parameters can 
benefit from the achieved result (Konovalenko et al., 2021). 

Through the fine-tuning of the AlexNet Model, we presented 
in the research a CNN-based crack detection technique. In 
this work, Initially, we employed the 4160x3120 pixel raw 
images, cropped into 256x256 pixel images, to construct the 
training and validation set then the CNN model was trained 
using the refined AlexNet model having an accuracy of 
98.67% (Shengyuan et al., 2017). 

IV. METHODOLOGY

The general architecture, the layers employed in the 
investigation, and the histories of each layer are all explained 
in this part. Multiple layers, including input, convolution, 
pooling, activation, and output layers, can be used to form the 
overall CNN architecture. Convolution and pooling 
operations are carried out in the convolution and pooling 
layers. A neural network with a multi-layered design is called 
a deep neural network. Depending on the intended uses, 
additional auxiliary layers like batch normalization (BN) and 
dropout layers may be incorporated into the aforementioned 
layers. 

A. Convolution Layer

An essential procedure that underpins a neural network’s 
capacity to automatically identify and extract hierarchical 
characteristics from input data is the convolution layer 
operation, most especially in Convolutional Neural Networks 
(CNN). Sliding tiny filters, or kernels, across the input data 
and carrying out a convolution operation at each place 
constitutes the fundamental part of this operation. The filter 
calculates the dot product between its weights and the 
associated values in the input at each step by scanning a local 
receptive field of the input.  

Fig. 1 Example of CNN having Convolutional Layer 

The result is a feature map that highlights relevant patterns, 
such as edges, textures, or more complex structures, 
depending on the task at hand. The convolution operation 
inherently captures spatial hierarchies, enabling the network 
to discern local features in lower layers and progressively 

combine them into more abstract and complex 
representations in higher layers. This process allows CNN to 
automatically learn and adapt to the intricate patterns 
inherent in the input data, making them particularly effective 
in image-related tasks such as crack detection in metallic raw 
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materials. The convolution layer operation, coupled with 
weight sharing and hierarchical learning, forms the backbone 
of CNN, contributing to their success in a variety of machine-
learning applications. 

B. Pooling Layers

In the architecture of Convolutional Neural Networks 
(CNN), pooling layers are critical because they reduce the 
spatial dimensions of feature maps, which improves 
computational efficiency and the network’s capacity to 
concentrate on important information. The pooling operation 
involves systematically down-sampling the input data within 
local regions defined by small windows. The most popular 
kind of pooling is called max pooling, which successfully 
highlights the most salient features by retaining the greatest 
value inside each frame. 

Alternatively, average pooling calculates the average value 
in each window. The pooling operation introduces translation 
in-variance, allowing the network to detect features 
regardless of their exact position in the input space. By 
reducing the spatial resolution, pooling layers also contribute 
to parameter reduction and mitigation of over-fitting, aiding 
the network’s generalization capabilities. However, careful 
consideration is needed to balance down-sampling and 
information preservation, ensuring that crucial features are 
retained for accurate and meaningful representation in 
subsequent layers of the CNN architecture. 

C. Activation Layer

An essential part of neural network architectures, such as 
convolutional neural networks (CNN), is the Rectified Linear 
Unit (ReLU) activation function. Its function is to add non-
linearity to the network by introducing all negative values to 
zero and permitting positive values to flow through 
unaffected. Mathematically expressed as f(x)=max(0,x), 

Fig. 2 ReLU Activation Layer 

The ReLU operation efficiently addresses the vanishing 
gradient problem, promoting faster and more effective 
convergence during training. By introducing non-linearity, 
ReLU enables neural networks to model complex 

relationships in data, contributing to their capacity to learn 
and represent intricate patterns. The simplicity and 
computational efficiency of the ReLU activation have made 
it a popular choice in deep learning models, enhancing their 
ability to capture and propagate relevant information through 
the network layers. This activation function has played a 
pivotal role in the success of various applications, from image 
recognition to natural language processing, contributing to 
the advancement of deep learning across diverse domains. 

D. Auxiliary Layers

Over-fitting has long been an issue in machine learning. This 
issue occurs when a network successfully classifies a training 
set of data, but the results of testing and validation remain 
unsatisfactory. To address this issue, dropout layers are used. 
Because of intricate co-adaptations, training a network with 
a large number of neurons frequently leads to over-fitting. 
Dropout’s basic concept is to arbitrarily break connections 
between neurons in linked layers at a specific dropout rate. 
Reducing these adaptations enables a network to generalize 
training instances considerably more effectively. 

E. Sigmoid Function

Fig. 3 Sigmoid Function 

The sigmoid function, often denoted as σ(x), is a popular 
activation function used in neural networks, logistic 
regression, and binary classification tasks. It maps any real-
valued number to the range [0, 1], making it particularly 
useful for producing probabilities. The sigmoid function’s 
mathematical expression is as follows: 

Fig. 4 Sigmoid Function Mathematically 

The mathematical constant Euler’s number, represented by 
the letter “e” in this case, is roughly equivalent to 2.71828. 
The input “x” is effectively squashed to a probability-like 
scale by the sigmoid functions, which accept it as input and 
return a value between 0 and 1. When “x” is large, the 
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sigmoid output approaches 1, and when “x” is significantly 
negative, the output tends toward 0. 

The sigmoid function is advantageous in scenarios where the 
goal is to model binary outcomes or where the outputs need 
to be interpreted as probabilities. Its smooth, differentiable 
nature is conducive to efficient gradient-based optimization 
during the training of neural networks. Despite its common 
use, the sigmoid function is not without limitations, such as 
susceptibility to vanishing gradient problems in deep 
networks. However, in binary classification tasks and 
scenarios demanding interpretable outputs, the sigmoid 
function remains a valuable tool in the arsenal of activation 
functions.  

V. DEVELOPING A CLASSIFIER TO IDENTIFY
SURFACE CRACKS 

This section explains the factors taken into account when 
creating the database and underlying hyper-parameters that 
were set for CNN training. It takes time to configure and 
select appropriate hyper-parameters (such as learning rates 
and regularization parameters), and there are no precise 
recommendations for those parameter optimizations. As a 
result, using the validation set errors as a reference, it is 
required to experiment to find the optimal network 
architecture for this concrete crack detection. This article’s 
tasks are all completed on a workstation equipped with GPUs 
(GPU: NVIDIA® GeForce RTXTM 3050, RAM: 16GB, and 
CPU: Intel® CoreTM i5). 

A. Data Generation

To train and test the performance of the model, a total of 1081 
raw images with various pixel resolutions are used. The 
images were captured with a hand-held, high-resolution 64 
MP camera from mechanical hardware prototypes of hex-
faced nuts. The objects were between 2.0 and 3.0 inches away 
on average. However, some test shots were taken at less than 
1.0 inches, and the illumination in each shot varies 
significantly.  1081 of the 1287 raw images are used in 
training procedures, while 206 images are used in testing 
procedures. After labelling every image as intact or cracked, 
the 1287 raw images are cropped into smaller images with 
256 x 256 pixel dimensions to construct the database for 
training and testing. As a result, there are 1287 images are 
there in the database. To create training sets, randomly 
selected images are taken from the database. 

The network that was trained on small images allows the 
scanning of any image that is larger than the intended size, 
which is why the relatively small cropping size was chosen. 
However, the network might capture any elongated features, 
like scratches, if smaller images than the ones chosen here 
are used. Additionally, marking images as damaged or 
undamaged is more challenging for smaller images. The 
produced database contains a large range of image variations 
for a robust damage classifier. There are fractures on four of 
the picture space boundaries in several of the cropped images. 

These kinds of images are strictly prohibited for the reasons 
listed below. First, the size of the input images decreases as 
they pass through the CNN, indicating that edges containing 
fractures are less likely than those without to be picked up by 
a network during training. Second, it is impossible to 
determine if these fracture features are genuine cracks or not, 
which may result in incorrect annotations in the training 
dataset. 

Lastly, the barely discernible crack features make it 
impossible to validate whether the predicted class is true-
positive or false-positive, even if a trained model can classify 
such images. 

Fig. 5 Bad metallic surface Fig. 6 Good metallic surface 

B. Data Augmentation

We used a data augmentation technique to create variations 
of an image that was taken from a piece of hardware. In the 
fields of computer vision and machine learning, data 
augmentation is a crucial technique that aims to improve 
model performance by artificially increasing the diversity of 
training datasets. This method involves applying various 
transformations to existing data, creating new instances with 
modified features while retaining the essential characteristics 
of the original samples. Common augmentation techniques 
include rotations, flips, translations, and changes in lighting 
conditions. The primary goal of data augmentation is to equip 
models with the ability to generalize well to unseen variations 
and improve robustness. By exposing the model to a broader 
range of scenarios, data augmentation mitigates over-fitting 
and aids in capturing the inherent variability present in real-
world data. This strategy is particularly valuable when 
working with limited datasets, as it effectively amplifies the 
amount of training information available. Employing data 
augmentation adheres to ethical research practices, as it 
contributes to model fairness, transparency, and accuracy 
without introducing biases, ensuring the generation of 
reliable and effective machine learning models. 

C. Hyper Parameters

Using the SGD technique with a tiny batch size of 16 images 
out of 1081, the described network is trained. The 
logarithmically decreasing learning rates are utilized because 
tiny and decreasing learning rates are advised (Wilson and 
Martinez, 2001). Momentum and weight decay parameters 
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are assigned by 0.9 and 0.0001, respectively. Our base model, 
a multilayered pretrained powerful model that can categorize 
images into many categories based on input, is based on the 
VGG16 architecture. 

Fig. 7 Code Snippets of Data Augmentation Conditioning 

D. Architecture

Convolutional Neural Network (CNN) architecture is a novel 
paradigm in deep learning that is especially suited for tasks 
that require grid-like data, such as computer vision and image 
recognition. The hallmark of CNN is their hierarchical 
structure, characterized by layers that progressively learn 
hierarchical features from input data. Usually, the 
architecture is made up of fully connected, pooling, and 
convolutional layers. Convolutional layers use learnable 
filters to scan input data, capturing spatial hierarchies and 
local patterns crucial for understanding complex features. 
Pooling layers reduce spatial dimensions, focusing on the 
most salient information. High-level features are integrated 
by fully connected layers to produce final forecasts. We have 
compared the performances of multiple pre-trained transfer 
learning model architectures including VGG16 Net, Res152 
Net, MobileNet, AlexNet, and LeNet out of which VGG Net 
and ResNet performed spontaneously and were able to  
classify the images with higher accuracy as compared to 
other architectures. 

In our model architecture, we have built a simple model 
architecture with VGG and Res Net Models. The initial 
convo layers pairs of the VGG model include a filter of size 
64 x 64 kernel size of 3x3 with an activation function ReLU. 
This layer intakes an input pre-processed image of size 256 x 
256 x3 RGB image and performs convolution operations on 
it. The following pair of convo layers have filters of size 128 
x128 and 256 x 256 with the same kernel size and ReLU 
activation function. The final 2 blocks of VGG16 Net include 
3 convo layers in each block with a filter size of 512 x 512. 
Model architecture also includes Max pooling layers after 
each convo layer of size 2 x 2 to reduce the spatial dimensions 
of the output image from each layer. Following consecutive 
convo and pooling layers, the output image is flattened in a 
one-dimensional vector and given input to the Dense network 
with 3 layers of densely connected neurons. The activation 

Function for dense layers is the same as ReLU except for the 
last layer where we have used Sigmoid activation Function. 

Fig. 8 VGG 16 Net  Architecture 

Similarly, the input to ResNet-152 is typically an RGB image 
with a fixed size, commonly re-sized to 256x256 pixels. The 
image is passed through the network for feature extraction 
and classification. The input image is passed through the 
initial convolutional layer, which performs a convolution 
operation with a large filter size (typically 7x7) to extract 
basic features from the input image. This layer is followed by 
batch normalization and ReLU activation to normalize the 
activation’s and introduce non-linearity into the 
network.ResNet-152 consists of several stages, each 
containing multiple residual blocks. These stages gradually 
reduce the spatial dimensions of the feature maps while 
increasing the number of channels. 

Each stage typically performs down-sampling (reducing 
spatial dimensions) either through convolutional layers with 
strides or through max-pooling operations. Within each 
stage, the residual blocks are stacked. ResNet-152 has 4 
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stages in total. Each residual block contains multiple 
convolutional layers along with skip connections. The basic 
building block of ResNet is the “Residual Block.” In ResNet-
152, the primary type of residual block used is the Bottleneck 
Block. Bottleneck Block consists of three convolutional 
layers: 1x1 Convolution: It’s used to reduce the number of 
channels (dimensionality reduction). 3x3 Convolution: This 
layer performs the main feature extraction. 1x1 Convolution: 
This layer is used to increase the number of channels. Each 
convolutional layer is followed by batch normalization and 
ReLU activation. 

The original input to the block is also passed through a 
shortcut connection (skip connection) to the output. The skip 
connection enables the gradient to bypass the convolutional 
layers, alleviating the vanishing gradient problem and 
allowing for easier training of very deep networks. After the 
final stage of residual blocks, global average pooling is 
applied to aggregate spatial information across the feature 
maps.  

Global average pooling reduces each feature map to a single 
value by averaging all its elements, resulting in a fixed-size 
feature vector regardless of the input image size. The output 
of global average pooling is then passed through a fully 
connected layer. This layer serves as the final classifier and 
typically consists of a dense layer followed by a softmax 
activation function, which generates the final class 
probabilities. The output layer produces the final predictions, 
providing the probability distribution over the different 
classes in the classification task. 

E. Training and Testing Results

The CNN model with an architecture is trained on an image 
set of batch size 16. Each batch includes a set of 16 pre-
processed images of size 256 x 256 x 3. These 68 batches of 
images including in total of 1081 images are provided as 
training data for the CNN model. This dataset includes 1:1 
ratio variable picture data of metallic surfaces for both 
surface crack-free and cracked surfaces. To prevent bias in 
the model’s predictions, the equal ratio must be used during 
model training. 

The model is trained on input images for 5 epochs and the 
weights of neurons are adjusted using back-propagation 
algorithms during training as they are pre-trained, so it gives 
the best results at lower epochs only. When the model goes 
through each of the input images during each epoch it tries to 
track the common underlying patterns for the image with 
metallic surface cracks and tries to generalize the pattern by 
shifting the neuron weights. After training the model is tested 
on test set data which gives a validation accuracy of the 
model prediction. After 5 epochs we were able to attain 99% 
training accuracy and 94% testing accuracy. The accuracy 
and loss after each epoch are also plotted in the figures below. 

Fig. 9 Accuracy of model per Epoch VGG16 

Fig. 10 Loss of model per Epoch VGG 16 

Fig. 11 Accuracy of model per Epoch Res152 
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Fig. 12 Loss of model per Epoch Res152 

TABLE I EVALUATION  
Model Accuracy Precision Recall F1 Type 1 Error Type 2 Error 

VGG16 94.17% 0.9553 0.9386 0.9468 0.054 0.061 
Res152 94.66% 0.9813 0.9210 0.9501 0.0217 0.079 
MobileNet 78.64% 0.7822 0.8508 0.815 0.2934 0.149 
AlexNet 61.23% 0.6287 0.7280 0.6747 0.5326 0.272 

LeNet 47.09% 0.5196 0.5789 0.5474 0.6630 0.421 

Fig. 13 Glimpse of accurate predictions on test data by VGG model 

VGG16 and Resnet 152 outperformed the model expectation 
with around 94% accuracy in detecting faulty metal pieces. 
Mobilenet was able to gain accuracy of 78% but failed in 
cases of detecting sideline cracks in an input images. Alexnet 
and LeNet’s, typical model architecture failed to generalize 
the underlying pattern for detecting the cracks during training 
of the model. Different model performances are evaluated 

using different parameters as presented in Table I.  This 
completes model building, testing, and evaluation of the 
model architecture which can be deployed over and made live 
to detect and inspect the raw material at quality inspection. 
The results obtained in real time can be used to retrain the 
model to improve the model’s ability to detect faulty pieces 
of different kinds.  
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VI. CONCLUSION AND FUTURE WORK

It was successfully suggested to use CNN-based deep 
learning to detect cracks in hex nuts. The CNN outperformed 
conventional edge detection methods with consistent 
performance across a range of settings and lighting 
conditions. It demonstrated potential in identifying tiny 
fissures under difficult illumination conditions. For this 
project, we used and compared various CNN architectures. 
The accuracy achieved with VGG16 is approximately 
94.17%, with ResNet yielding 94.66%, MobileNet yielding 
almost 79%, AlexNet yielding approximately 61%, and 
LeNet yielding approximately 47%. The resilience of the 
technique was further shown by its independence from 
picture quality, camera specifications, and working distance. 
Comparative studies demonstrated its advantages over 
traditional techniques, especially under difficult conditions. 
The potential of CNN for a variety of damage detection 
applications is highlighted by its capacity to learn from large 
amounts of training data. Future work will integrate several 
data modalities, such as ultrasound or infrared imaging, to 
improve the comprehensiveness of fault detection. Fusion 
methods can take advantage of complementary information 
to increase robustness. Large datasets and pre-trained models 
combined with transfer learning could speed up training and 
improve generalization. For real-time detection in real-world 
applications, model architectures must be optimized for edge 
device deployment. Building trust is achieved by improving 
interpretability using gradient-based approaches or attention 
mechanisms. To perform predictive maintenance, it is 
necessary to comprehend the dynamic progression of 
problems. More extensive and varied datasets, cooperative 
benchmarking endeavours, and human-in-the-loop systems 
facilitate the enhancement and implementation of hexagonal 
defect detection models in practical engineering settings. 
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