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Abstract - In the industry, predictive maintenance, or PdM, has 

gained popularity as a means of lowering maintenance costs and 

achieving efficient operational oversight. The essence of PdM is 

to anticipate the occurrence of the next breakdown, allowing for 

the timely scheduling of maintenance activities prior to its actual 

manifestation. The objective of this work is to develop a              

Time-Between-Failure (TBF) forecasting framework using a 

data-driven methodology. Forecasting the Remaining Usable 

Life (RUL) is a vital issue in PdM. The objective of the current 

research is to include Geographic Information Systems (GIS) 

data into TBF (Time Between Failures) modeling and 

investigate their influence on automotive TBF via the use of deep 

learning techniques. Initially, an information fusion technique 

has been investigated to address the disparity in information 

category and sample rate between the maintenance information 

and GIS information. The Cox Proportional Hazard Model 

(Cox PHM) has been employed using the combined information 

to create the Health Index (HI). This research introduces an 

Integrated Deep Learning (IDL) architecture that aims to 

provide a unique perspective on PdM. This design consists of an 

input layer, a Long-Short Term Memory (LSTM) layer, a 

Dropout layer (DO) followed by another LSTM layer, a hidden 

layer, and an output layer. The Genetic Algorithm (GA) has 

been employed to discover the optimal number of periods and 

batch size for the design. The activation function is utilized after 

the output level and the DO ratio, and the optimization method 

enhances the loss function established using Grid Searching 

(GS). Research utilizing an extensive record of vehicle upkeep 

from a fleet firm demonstrated the efficiency of the suggested 

method and the influence of GIS parameters on the investigated 

automobiles. 

Keywords: Predictive maintenance, Remaining Usable Life, 

Geographic Information System, Long-Short Term Memory, 

Genetic Algorithm 

I. INTRODUCTION 

Maintenance is a crucial aspect of the manufacturing since it 

is closely connected to contemporary manufacture processes 

and managing a product's lifespan (Stark, 2022). A machine 

malfunction may result in a fatality. Concurrently, the sector 

is increasingly worried about the substantial expenses 

associated with upkeep. Planning maintenance proactively 

before any failures occur is crucial to minimize the risk of 

human harm and save maintenance expenses. Fleet 

management businesses are greatly concerned with the 

upkeep of automobiles. In the event of a car engine 

malfunction while in operation, it has the potential to result 

in accidents and economic detriment.  

Fleet management businesses must prioritize improved 

maintenance practices to maintain the optimal condition of 

their automobiles. Two primary maintenance techniques are 

often used in fleet administration: Run-To-Failure (RTF) and 

PdM (Pech et al., 2021). RTF is a management method that 

is characterized by a reactive approach. Maintenance is 

deferred until a failure occurs. PdM is considered a 

maintenance plan based on time intervals (Ram & 

Chakraborty, 2024). By implementing PdM, a car undergoes 

a planned inspection at regular intervals. The implementation 

of RTF management does not result in a reduction in 

maintenance expenses (Rika et al., 2023).  

Regarding PdM, a challenging aspect is determining the 

appropriate interval for planned inspections. Excessive 

scheduling of maintenance will result in higher costs and a 

decrease in the overall utility of the car. However, if the 

scheduling frequency is reduced, the likelihood of an accident 

will increase (Çınar et al., 2020). Predicting a car's Time 

Between Failures (TBF) may provide concrete advantages to 

the maintenance plan (Arora, 2024). Using TBF prediction, 

maintenance may be strategically planned to prevent 

accidents and save maintenance expenses.  

Various elements, including automotive design, driver 

behavior, and workplace environment, influence the lifetime 

of automobiles (Choi & Zhang, 2022). A fleet management 

business with many autos may distribute the vehicles 

throughout several regions. The geographical variables that 
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might impact the lifespan of automobiles, such as climate, 

topography, and congestion, vary from region to region. 

Therefore, including these aspects in the analysis of PdM 

might provide substantial advantages for the fleet 

management organization. GIS is a comprehensive system 

created to acquire, retain, alter, analyze, oversee, and display 

many forms of geographic data (Liu & Cheng, 2020). GIS 

may be used to acquire useful data about the automotive 

lifetime. Once the GIS data has been gathered, a crucial 

matter that must be dealt with is mixing this data with 

maintenance information.  

The use of PdM has progressively risen in conjunction with 

the establishment of Industry 4.0. Manufacturers and 

institutional investors have recognized it as a significant 

investment sector. PdM involves the creation of analytical 

techniques to monitor machine characteristics, optimize 

maintenance schedules, and produce immediate alarms. 

PdM enables firms to decrease service expenses, optimize 

operational duration, and enhance production effectiveness 

(Zitnik et al., 2019). 

The two predominant methodologies for PdM are rule-based 

and Machine Learning (ML)-based techniques. In the                

rule-based technique, also known as status evaluation, 

information is consistently gathered from the system via 

sensors. The framework produces notifications when specific 

threshold levels based on rules are detected (Jelena & Srđan, 

2023). In this methodology, product managers collaborate 

with technical and customer support teams to pinpoint the 

underlying causes of machine problems. The rules are 

formulated based on the condition "if this is the case, then 

perform this action." For instance, let's assume that both the 

temperature and velocity of rotation exceed a certain 

threshold. Under such circumstances, the system transmits 

notifications to the operators who are accountable for 

preventing malfunctions. These regulations provide an 

inherent PdM capability at a certain threshold (Martínez-

García & Hernández-Lemus, 2022). Nevertheless, it is 

crucial for a product team to meticulously determine the 

specific data points that need to be gathered. Deep learning 

(DL) refers to a set of ML algorithms (Aria et al., 2020). It 

has its origins in the Artificial Neural Network (ANN) and 

has been the subject of contemporary study. Feature selection 

is not necessary in DL. Features that have little relevance to 

the TBF will be assigned a low weight. To clarify, the weights 

assigned to the input layer in a DL model may serve as a 

representation of the relevance of features to the task at hand, 

namely the TBF (Camgözlü & Kutlu, 2023). This research 

focuses on two specific objectives. Firstly, it is necessary to 

develop a DL model that can estimate vehicle time between 

failures (TBF) using previous maintenance information and 

GIS information. Furthermore, it is necessary to ascertain the 

influence of GIS characteristics on the TBF (Zhang et al., 

2018). 

This research proposes a technique for estimating the RUL of 

automobiles, considering GIS information. In this 

methodology, maintenance information has been converted 

and merged with GIS information. Furthermore, a Cox 

PHM is used to build the HS of the combined information. 

This paper presented an IDL architecture that utilizes the 

LSTM with GA and GS as hyperparameter optimization 

techniques.  

II. RELATED WORKS 

Current approaches to PdM may be classified into two 

categories: statistical approaches and ML methods. 

Parametric and semi-parametric approaches are                            

well-recognized statistical techniques used in PdM. 

Parametric approaches assume that a machine's lifespan can 

be described by a certain parametric distribution, such as the 

Weibull distribution (Xie & Lai, 1996). or the exponential 

distribution (Grubbs, 1971). Parametric approaches provide 

exceptional performance when data conform to a certain 

distribution.  

Nevertheless, the arrangement of information does not 

consistently align with the model, resulting in the inability to 

ensure the correctness of parameter estimates. The 

Accelerated Fault Time (AFT) model is a significant 

parametric framework for analyzing the quicker or slower 

failure time. A suggested AFT model was used to analyze the 

links between life events and various forms of stress. The 

suggested model was derived from a Log-Linear model. 

Probability may be employed when examining restricted 

information (Feng et al., 2022). 

Nonparametric approaches have been extensively researched 

over many decades. The dominant model is referred to as the 

Cox PHM. The Cox PHM and its many adaptations are 

extensively employed in dependability examination (Chen et 

al., 2020). It is well recognized for its ability to handle both 

filtered and unrestricted information efficiently. Several 

studies have used the Cox PHM to examine the dependability 

of a product at a specific time frame, considering the pertinent 

elements related to reliability. It addresses the challenges 

related to information sparseness and filtering that often arise 

in the evaluation of maintenance-related data. The objective 

is to provide a comprehensive solution by using DL and 

reliability evaluation. Initially, an autoencoder is used to 

transform the initial information into a resilient description. 

Furthermore, a Cox PHM is used to predict the TBF of the 

filtered information. 

Dong, (2021) introduced a technique that utilizes Dempster-

Shafer theory (DST) to forecast the RUL of Lithium-Ion 

Batteries (LIBs). This approach enhances the accuracy of 

predictions, particularly when there is little data available. 

Furthermore, this work introduces a method to revise the 

Fundamental Probability Allocation (FPA) of DST, which 

signifies the level of certainty in the forecast, at every 

iteration while predicting the RUL. The revised FPA at every 

step will amplify the significance of the extremely accurate 

prediction technique in the merged outcomes. Consequently, 

it will offer a more precise forecast outcome. The suggested 

approach may also serve as a foundation for integrating the 

prediction outcomes derived from diverse independent 
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datasets. The simulation findings and comparison with 

current LIB RUL prediction techniques demonstrate that the 

suggested approach yields superior accuracy and reliability 

in predicting outcomes.  

Berghout et al., (2020) introduced a novel data-driven 

learning approach for predicting the RUL in their study. This 

approach is based on a web-based serial extreme 

ML algorithm. Initially, a novel feature mapping approach 

using stacked autoencoders is introduced to improve the 

depiction of features utilizing precise restoration. 

Furthermore, a novel flexible memory function is proposed 

to tackle adaptive programming in response to environmental 

input. This function relies on the time-based difference of DL 

and aims to improve the capacity to monitor newly arriving 

data dynamically. Furthermore, a novel and improved 

selection technique was devised to exclude undesired 

information series and guarantee the merging of the learning 

model variables to their optimal values.  

Liu et al., (2020) presented a deep belief network to forecast 

the RUL of a bearing. A recurrent neural network model was 

developed to predict the lasting dependability of a machine 

by analyzing the spreading of defects. Both researchers used 

sensor data, with the first study emphasizing RUL and the 

later study focusing on dependability (Zhang et al., 2018). 

Conducted a study on using DL to predict RUL. A                     

single-layer perceptron turns the unprocessed sensor 

information into a HI. Subsequently, the HI is employed to 

teach a bidirectional LSTM network.  

Wang et al., (2018) introduced an adaptive inference trees 

framework for predicting the dependability of car engines. 

This research coupled a regression model with a Cox PHM. 

The suggested tree model may provide a clear understanding 

by revealing the key qualities. Both statistics and 

ML approaches play a crucial role in PdM. Historically, 

statistical approaches were dominant when dealing with tiny, 

low-dimensional datasets. In the age of big data, ML has 

garnered significant interest due to its exceptional capacity to 

extract valuable insights from large and intricate datasets.  

III. AUTOMOBILE MAINTENANCE PREDICTION USING 

INTEGRATED DEEP LEARNING AND GEOGRAPHICAL 

INFORMATION SYSTEM 

The suggested solution requires the collection of 

maintenance information from the workshop of a fleet 

management firm, as well as the collection of GIS 

information based on the geographical region in which the 

automobiles operate. The database is divided into two 

segments, with the first segment utilized for integrating the 

information and the subsequent segment employed for 

constructing a hierarchical structure for the combined 

information. Furthermore, maintenance and GIS information 

are combined. At this point, the databases are divided into 

two categories: sequential information and conventional 

numerical information. The two forms of data, maintenance 

and GIS information, are combined.  

 

Fig. 1 Architecture of Automobile PdM Using IDL and GIS 

The Cox PHM calculates the HI by combining the 

maintenance and statistical GIS information (standard 

deviation and mean). Furthermore, an IDL architecture is 

proposed to offer a distinct viewpoint on the domain of PdM. 

The IDL framework used LSTM for prediction, using GA to 

determine the ideal values for the number of periods and 

group size in the design. The activation function is used 

following the output level, the DO ratio, and the optimization 

approach to improve the loss function produced using GS. 

Ultimately, the projected HI acquired from the IDL network 

is employed to chart the RUL based on Cox PHM. Fig. 1 

depicts the architecture illustrating the suggested technique. 

3.1. Gathering of GIS Information 

The lifespan of an automobile may be influenced by a range 

of variables, such as weather conditions, traffic patterns, and 

the kind of topography it encounters. A fleet management 

firm handles many vehicles operating in diverse working 

environments, which might vary greatly depending on the 

listed GIS elements. Therefore, it is necessary to condense 

and retrieve GIS information for a specific geographic region 

using GIS software system. Weather information, including 

temperature, rainfall, and sunlight hours, may be acquired 

from weather observation stations within a specific 

geographical region. The state of traffic may also influence 

the lifespan of an automobile. In areas with significant traffic 
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congestion, the frequency of accelerating and decelerating is 

often increased, which might expedite the deterioration of the 

vehicle. Traffic information about a certain operational zone, 

such as information on traffic flow, may be obtained from the 

transportation department. The topography is another factor 

that might influence the lifespan of automobiles. In hilly 

regions, cars need to accelerate often and decelerate, which 

worsens the wear and tear of the vehicle. The altitude and 

slope information related to a specific geographical region 

may be analyzed and retrieved from the topographic map 

using GIS software. Notably, many GIS parameters, like 

weather and traffic, exhibit temporal variability, while other 

factors, like geography, remain generally constant throughout 

a given period. Weather and traffic information may be 

classified as sequenced information, whereas topography 

data can be classified as regular numerical information in 

PdM.  

3.2. Information Combining 

Once the maintenance and GIS information has been 

obtained, they must be combined to create a model for 

automotive RUL prediction. The maintenance and GIS 

databases include conventional numerical and sequential 

information. It is necessary to merge the serial information in 

both the maintenance information and the GIS database. A 

maintenance record entry is represented as {𝑝𝑖 , 𝑞𝑖} where 𝑝𝑖  

is the serial component of the input vector and 𝑞𝑖 is the 

TBF measured in days. The serial component of GIS 

information admission is represented as 𝑟𝑖. 𝑞𝑖 varies from one 

month to many years, while 𝑟𝑖 shows the state of GIS in a 

month. The GIS information admissions associated with 

𝑝𝑖  𝑎𝑛𝑑 𝑞𝑖 may be represented as:  

𝑅𝑖 = {𝑟𝑖(1), 𝑟𝑖(2), 𝑟𝑖(3) … … … , 𝑟𝑖(𝑛)}, 𝑛 = 𝑞𝑖/30  (1) 

To merge the sequential component of maintenance 

information with GIS information, 𝑞𝑖  should be divided into 

monthly segments and 𝑝𝑖  should be appropriately estimated. 

This may be represented as:  

𝑞𝑖 →  {𝑞𝑖(1), 𝑞𝑖(2), 𝑞𝑖(3) … … … , 𝑞𝑖(𝑛)}   (2) 

𝑝𝑖 →  {𝑝𝑖(1), 𝑝𝑖(2), 𝑝(3) … … … , 𝑝𝑖(𝑛)}   (3) 

with 𝑛 = 𝑞𝑖/30. 

Once the sequential portion of the maintenance information 

has been converted, it is combined with the sequential portion 

of the GIS information. 𝑆𝑛 represents the input of the 

combined sequential database 𝑆 and is described as follows: 

𝑆𝑛 = {[𝑝𝑖(𝑛), 𝑟𝑖(𝑛)], 𝑞𝑖(𝑛)}     (4) 

3.3. Construction of HI 

Once the maintenance information and GIS information are 

combined, it is necessary to determine the HI. The 

information label 𝑞𝑖 is divided into monthly segments and 

transformed into TBF. When TBF is utilized as an 

information label, it is presumed that automotive 

deterioration follows a rectilinear distribution, which is not a 

typical outline in automobile fault modeling. A suitable data 

label for representing the state of the car must be identified. 

The literature demonstrates that several techniques have been 

used to build the HI of machines, systems, or components.  

However, techniques are used to assess the HI using 

information from sensors, which exhibits a significant 

correlation with the instantaneous HI of the machine, system, 

or component. In the absence of sensor information, most 

current approaches are not applicable. The Cox PHM is a 

commonly used statistical approach in reliability research. It 

has been employed to assess the deterioration trend of 

automobiles using maintenance information. The Cox 

PHM analyzes the association between various 

characteristics and the risk function. The covariate is 

represented by the symbol 𝛽𝑥, whereas the input vector is 

represented by the symbol 𝑃𝑥. The Cox PHM is represented 

as:  

ℎ(𝑡, 𝑃) = ℎ0(𝑡)exp (𝛽1𝑝1 + 𝛽2𝑝2 … … + 𝛽𝑥𝑝𝑥) (5) 

where ℎ0(𝑡) is the determined probability of predictor. 

3.4. IDL 

The IDL framework used LSTM for prediction, using GA to 

determine the most favorable values for the number of 

periods and group size in the design. The activation function 

is used following the output level, the DO ratio, and the 

optimization approach to improve the loss function created 

using GS. Ultimately, the projected HI derived from the IDL 

network is used to chart the RUL based on Cox PHM. 

 

Fig. 2 Proposed IDL Framework 
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Fig. 2 illustrates the suggested IDL technique. Before 

commencing the modeling phase, feature design was 

conducted to create an efficient prediction model that could 

comprehend the trends in the sensor information. 

Subsequently, the GA and GS were executed. During these 

phases, the DO proportion in the DO level, the activation 

functions employed after LSTM layers, the quantity of 

epochs, the group size utilized in each epoch, and the 

optimization technique for optimizing the cost function were 

determined. Once the specifications for the network were 

determined, LSTM was trained.  

 

Fig. 3 Proposed LSTM Architecture 

Fig. 3 shows a DO level following the first LSTM level in the 

projected framework. The input layer accepts information 

originating from various databases. The information is 

structured as a time series. In the suggested network, an 

additional LSTM layer is included after the DO layer to 

acquire the patterns within the database by distinguishing 

between important and irrelevant information. Both LSTM 

levels operate based on the similar premise; they act only as 

filters that selectively choose important information. The 

second LSTM level produces six variables as outputs. The 

goal of the extra concealed layer that follows the second 

LSTM level is to acquire six input variables and decrease 

their number to four, which are then passed on to the output 

level. Therefore, the output level operates on a reduced set of 

four input variables rather than the original seven input 

parameters. The objective is to enhance the system's 

efficiency and accuracy by limiting the number of parameters 

reaching the output level to three. The concealed level 

facilitates the random distribution of information from the six 

input parameters to the three unique meta-input variables, 

which are subsequently directed to the last output level. 

IV. RESULTS AND DISCUSSION 

Once the maintenance and GIS information has been 

gathered and determined, the initial phase is to merge the 

information. The maintenance database contains a total of 

6,475 data elements. The technique of 5-fold cross-validation 

was used. During every trial of 4-fold cross-validating, 25% 

of the information items in the maintenance database were 

utilized for combining information and subsequent 

RUL modeling. Following the information conversion, 

25% of the information will provide more than 65,000 data 

entries, which is plenty for training a neural network that will 

yield adequate performance. However, the HI structure has 

significant importance. Seventy-five percent of the remaining 

data items were used to create a valid Cox PHM in HI.  

For this research, four algorithms have been employed to 

compare and appraise the efficacy of the projected IDL 

network. The evaluation methods include Artificial Neural 

Network (ANN), LSTM network, Deep Convolutional 

Neural Network (DCNN), and Support Vector Machine 

(SVM). The study utilizes two measures, the Correlation 

Coefficient (CC) and Root Mean Square Error (RMSE), to 

assess the algorithm's effectiveness.  

 

Fig. 4 Correlation Coefficient for Predicting RUL Constructed on 

Maintenance Information with or without GIS Information 

Fig. 4 depicts CC for predicting RUL grounded on 

maintenance information with or without GIS information. 

The suggested IDL method has a maximum CC of 0.978 

without GIS information and 0.982 with GIS information. 

This indicates that the algorithm has greater predictive 

potential when adding GIS data. The ANN algorithm roughly 

aligns with a value of 0.975 without GIS and 0.978 with GIS. 

The LSTM method has a CC of 0.971 without GIS and 0.976 

with GIS, showcasing its efficacy in managing time-series 

data. The DCNN algorithm exhibits a marginal decline in 

performance when using GIS (0.966) instead of excluding 

GIS (0.97), indicating that including GIS data may not much 

boost its prediction accuracy. Finally, the SVM technique 

exhibits the lowest correlation coefficients, measuring 0.958 

without GIS and 0.962 with GIS, which suggests its 

comparatively reduced efficacy in this particular scenario. In 

general, GIS information enhances the predicted accuracy of 

these algorithms, with the suggested IDL algorithm 

demonstrating the most substantial improvement. 

 

Fig. 5 RMSE for Predicting RUL Based on Maintenance Information with 

or Without GIS Information 
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Fig. 5 illustrates RMSE for predicting RUL based on 

maintenance information with or without GIS information. 

The proposed IDL method performs better in forecasting 

RUL, as shown by its lowest RMSE values of 0.21 and 0.24, 

with and without GIS data, respectively. The ANN achieves 

RMSE values of 0.24 with GIS and 0.26 without GIS, 

indicating high accuracy but somewhat lower effectiveness 

than the proposed IDL. The LSTM method demonstrates 

RMSE values of 0.25 with GIS and 0.27 without GIS. In 

contrast, the DCNN exhibits RMSE values of 0.27 with GIS 

and 0.29 without GIS, suggesting somewhat greater error 

rates than ANN and LSTM. The SVM method has 

the maximum RMSE values of 0.28 with GIS and 0.31 

without GIS, indicating that it is the least precise among the 

compared algorithms. Incorporating GIS information 

enhances the forecast accuracy of all methods, with the 

proposed IDL algorithm demonstrating the most substantial 

increase. 

V. CONCLUSION 

This work proposes a data-oriented approach for constructing 

a PdM system for automobile RUL estimation using 

GIS data. At first, researchers examined an information-

combining strategy to tackle the differences in information 

category and sampling rate between the maintenance and GIS 

information. In addition, the Cox PHM has been used to 

generate the HI by including the merged data. This study 

presents an IDL framework that offers a novel approach to 

PdM. A study done using a comprehensive database of 

vehicle maintenance from a fleet company revealed the 

effectiveness of the proposed approach and the impact of GIS 

parameters on the analyzed vehicles. The suggested IDL 

method has a maximum CC of 0.978 without GIS 

information and 0.982 with GIS information. The proposed 

IDL method performs better in forecasting RUL, as shown by 

its lowest RMSE values of 0.21 and 0.24, with and without 

GIS data, respectively. 
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