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Abstract - Optimization of task scheduling and information 

storage/retrieval is crucial for managing resource utilization, 

which enhances system performance and ultimately impacts 

provider productivity and customer satisfaction. Efficient task 

scheduling aims to optimize computing time, while efficient 

information management focuses on maximizing memory usage. 

This paper presents a novel approach to task scheduling using 

Ant Colony Optimization (ACO) to improve time-critical 

objectives such as makespan and network latency, while 

maintaining balanced load distribution across systems. By 

enhancing makespan, we aim to maximize CPU utilization, and 

by optimizing information storage/retrieval, we target 

minimizing network latency. Performance across these multiple 

objectives is achieved by modifying the heuristic and visibility 

functions to guide ants toward specific solutions. The 

effectiveness of the proposed algorithm, Resource-Aware Load-

Balancing for Time-Critical Applications (RALB-TCA), is 

demonstrated through implementation in the CloudSim 

simulation platform and benchmarking against existing 

techniques. 

Keywords: Ant Colony Optimisation, Makespan, Load Balance, 

Network Latency, Resource Utilization, Task Scheduling 

I. INTRODUCTION 

The networked computers helps in delivery of IT services 

through internet. Tasks are distributed for optimizing 

resources by matching the demands and availability. Efficient 

task scheduling plays a significant role as it leads to 

improvement in overall system performance. This is achieved 

through optimization of multiple objectives such as: 

completion time (makespan), data transfer time (network 

latency) and CPU utilization. It ultimately results in 

timeliness of services by the provider. Additionally, 

maintaining balance of loads across virtual machines (VMs) 

pave way for fault tolerant systems resulting in increased 

customer reliability on the provider for uninterruptable 

services.  

Ant Colony Optimization is chosen for the study as it is a 

meta-heuristic, multi-objective and decentralized algorithm. 

It is an algorithm based on the ant's behaviour related to their 

search for food. It has been progressively used in task 

scheduling due to its ability to optimise multiple objectives 

and adapt to the dynamic nature of the cloud and its 

decentralised operation by balancing exploration and 

exploitation. Its decentralised decision-making helps to 

increase scalability and fault tolerance in cloud systems. 

Extensive modifications have been introduced in this 

algorithm by researchers in the past to seek better results. To 

summarize, it has the following characteristics. 

• It can be applied to any general problem. 

• It can explore new solutions and also utilize known 

solutions. 

• Randomly search the solution space. 

• Iteratively improve the solutions.  

• It can optimize multiple parameters. 

• It can work in decentralized manner. 

• It is adaptive to changing environments. 

In this research, we propose a metaheuristic, multi-objective, 

resource-aware load-balanced ant colony optimisation 

algorithm for time-critical applications in cloud computing. 

The proposed algorithm provides a pareto-optimal solution 

for resource allocation by minimising makespan and network 

latency while maintaining load balance across the entire 

system. The proposed algorithm is simulated using the 

CloudSim simulator. Experimental results are compared with 

previously suggested improvements for Ant Colony 

Optimization.  

The organisation of the paper is as mentioned below.            

Section - II is on the related works. Section III gives insights 

into the proposed system and algorithm. Section IV details 

the simulation results obtained from the implementation and 

its analysis. Section V demonstrates and analyse the results, 

and Section VI concludes this paper. 

http://www.trp.org.in/
mailto:1firstauthor@first.edu


N.A. Suvarna and Deepak Bharadwaj 

IJISS Vol.14 No.2 April-June 2024 168 

II. RELATED WORKS 

A. Background and Context 

Many modern computing paradigms have emerged out of 

Distributed Computing, such as the Internet of Things (IoT), 

Mobile Computing, Edge Computing, Grid Computing, and 

Fog Computing (Eiriemiokhale & Olutola, 2023). They have 

gained popularity in recent times and have opened a number 

of challenges and research opportunities (De Donno et al., 

2019). Task allocation and resource provisioning still remain 

issues in native cloud computing and its derived variants 

without standard norms. Numerous researchers have 

attempted to optimise resources using Ant Colony 

Optimization (ACO). 

In the Ant Colony Optimization (ACO) approach, artificial 

ants traverse a solution space representing various scheduling 

possibilities. In real ants, pheromones are chemicals that are 

released to communicate with each other. These signals help 

ants coordinate their movements and work together on 

complex tasks, like finding the best path to a food source. 

In ACO, artificial ants represent possible solutions. They 

deposit pheromones along their paths. Pheromones in ACO 

represent the intermittently updated functions that guide 

towards attractive solutions. The more pheromones there are, 

the more likely the ants will follow them. Over time, paths 

with higher pheromone levels become more attractive, 

guiding towards optimal solutions. 

In ACO, pheromones let artificial ants share information and 

work together indirectly. This helps them explore and use 

solution spaces efficiently, like real ants. 

ACO is very flexible and practical for solving complex 

problems. For example, it can manage data flow from sensors 

to central servers in IoT networks, optimising path selection, 

load balancing, and energy consumption. Combining ACO 

with IoT communication and security technologies makes it 

worthwhile in various fields (Bobir et al., 2024). Its ability to 

handle complex, dynamic, multi-objective, and uncertain 

optimisation tasks, along with its scalable and bio-inspired 

design, makes it valuable in logistics, transportation, 

telecommunications, and engineering. 

Using ACO for task scheduling in large setups such as cloud 

environments paves the way for dynamic and adaptive 

solutions, considering everchanging workloads and resource 

availability. By imitating cooperative behaviours, the 

algorithm explores various solution spaces, leading to 

practical task assignments that enhance cloud-based 

operations' efficiency. Ants make decisions based on 

pheromone levels, indicating solution quality and heuristic 

information. Pheromones influence other ants' choices, and 

through multiple iterations inspired by the ant's behaviour, 

the ACO algorithm converges on an optimal or near-optimal 

schedule through iterative evaluation. 

Multi-Objective ACO (MO-ACO) aims to optimise several 

objectives simultaneously using a heuristic function. The 

resulting Pareto Optimal Solution represents a state where 

resources are efficiently allocated, and any further 

improvements would require trade-offs in another area. 

This paper implements such a multi-objective optimisation 

algorithm for time-critical objectives such as:  

1. Makespan 

2. Load Balance and  

3. Network Latency  

In ant colony optimisation, the visibility function is crucial in 

directing ants to make informed choices regarding the 

attractiveness of available paths. The heuristic function 

provides additional guidance, helping ants assess the 

potential quality of a solution. This knowledge complements 

the visibility function, enabling ants to identify which paths 

are worth exploring with greater precision. 

The algorithm presented in this paper builds a heuristic 

function to improve visibility in ant colony optimisation, 

aiding in the selection of suitable resources (Elfarra et al., 

2023). The heuristic is selected to consider the amount of 

available resources on individual virtual machines (VMs). 

Given that any cloud environment consists of heterogeneous 

nodes, the devised heuristic yields improved outcomes. This 

assertion is validated through the execution of the algorithm 

on cloudsim and by comparing the results with those of prior 

studies. 

B. Literature Review 

Several research papers on task scheduling through Ant 

Colony Optimization are studied with specific emphasis on 

the design of visibility and heuristic functions. The key 

findings are outlined below. 

Tawfeek et al., (2013) proposed a heuristic function, which is 

the inverse of the execution speed of the task on a particular 

VM. So, the lesser the execution speed, the higher the 

probability of choosing that VM. The objective function is set 

to minimise only makespan.  

The visibility function is given by: 

 ηij = 1/dij  (1) 

Where, 

𝑑𝑖𝑗 = 𝑇𝑎𝑠𝑘𝐿𝑒𝑛𝑔𝑡ℎ/𝐸𝑥𝑒𝑐𝑆𝑝𝑒𝑒𝑑 + 𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒/𝐵𝑎𝑛𝑑𝑊𝑖𝑑𝑡ℎ       (2) 

The pheromone update rule is set as follows: 

Δτij
k(t)  =  Q/Lk(t).  (3) 

Where k is the iteration number, τij is the incremental 

pheromone deposited by the ant while assigning task i to 

resource j, Q is a pheromone constant, and L is the expected 

makespan for the tour. The comparison is made with basic 

algorithms such as Round Robin and FCFS to demonstrate 

the improved performance. 
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Guo, (2017) proposes to improve both makespan and 

communication overhead by defining the objective function 

in terms of linear weights and heuristic function to choose the 

most suitable 

VM is:  

 𝜂𝑖𝑗 = 𝐿𝑜𝑎𝑑𝑗 ∗ 1/𝑒𝑡𝑖𝑗  (4) 

Where etij is the execution time of task j on ith machine. And 

Loadj is given by 

 𝐿𝑜𝑎dj = 1 − (Ej − Eavg)/ ∑ Ejj∈VM   (5) 

Where Ej is the execution time of the virtual machine, and Eavg 

is the average execution time of the Virtual machines. 

Chandrashekar et al., (2023) presented a hybrid weighted 

ACO. The author defines the heuristic function as, 

 ηij  =  α  ∗  makespan  +  β  ∗  cost  (6) 

The makespan of the individual VM is calculated as follows: 

 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(Mij) = Sij + WTij(t) + ECij(t)  (7) 

Where S is the time of submission of the task to the VM, WT 

is the waiting time, and EC is the execution time of the task. 

Then, the final makespan is calculated as per the following 

equation: 

 Makespan = ∑ ∑ (Mij)
m
j=1

n
i=1   (8) 

Liu et al., (2019) employ the genetic algorithm for initialising 

the pheromone and a search algorithm based on ACO, which 

facilitates accelerated convergence. Subsequently, to mitigate 

the risk of the algorithm being trapped in local optima, they 

suggest the random rule for selecting the subsequent node 

along the path. Furthermore, they propose a weighted 

constraint function that considers both time and cost. To 

determine the weighting of cost and time, they utilise the 

Analytic Hierarchy Process (AHP). 

Lin et al., (2019) use ACO-MCMS (Multi-Objective of 

Container Microservice Scheduling) to consider the 

optimisation of transmission overhead, load balancing, and 

reliability as a measure of the failure rate of the servers. The 

authors suggested a scheduling algorithm to solve container 

microservices in clusters. 

Chaharsooghi et al., (2008) utilised a Multiple Objective 

Evolutionary Algorithm to enhance scheduling operations by 

minimising costs and time while optimising resource 

utilisation and balancing the load. They employed the 

Tencent model for cost calculation for bandwidth and flow 

rate. However, the algorithm demonstrated poor resource 

utilisation. 

Moon et al., (2017) implemented slave Ant Colony 

Optimization (SACO), which is a diversification of 

probability parameters for slave ants, reducing their 

dependency on other ants. With updated makespan 

information, one ant is designated as a typical ant, exhibiting 

the best makespan for the group. The remaining ants become 

slave ants. Subsequently, a local pheromone is updated. 

Selvan et al., (2009) modelled the scheduling problem as a 

directed acyclic graph (DAG), with tasks representing nodes 

and edges indicating task transmissions between nodes. This 

graph representation imposes task dependencies and 

precedence rules, stating the sequence of subtask completion. 

The authors propose Ant Colony Optimization (ACO) to 

minimise both makespan and latency overheads. The 

heuristic function wraps both computation and latency costs. 

Sharma & Garg, (2022) introduced a QoS-based task 

scheduling using ACO by modifying the load balancing 

factor in the heuristic function in comparison to (3) as: 

LBj = 1 − (Ej − Eavg)/(Ej + Eavg) (9) 

Junyu & Lichen, (2018) recommended a simple heuristic 

function: 

 RT = ∑ RTi
k
i=1     (10) 

Where RT is the Runtime and K corresponds to the number 

of jobs on the specified virtual machine. Then, the final 

runtime is selected as the maximum runtime, and the other 

VMs are made to wait for the slowest/overloaded processor 

to finish (Santhosh & Prasad, 2023).  

Zuo et al., (2015) proposed performance and budget 

optimisation through ACO (PBACO) to improve makespan, 

resource utilisation, and user costs. The authors provide a 

technique for the problem of ACO's solution falling into the 

local optima through a fitness function based on performance 

and cost. This fitness function is then used to evaluate the 

quality of possible solutions. The fitness function is: 

 Fit(x) = γ ∗ e−F(x) + δ ∗ e−B(x) (11) 

Where  and  are the performance and cost weight factors, 

and F(x) and B(x) are the performance and cost functions, 

respectively. 

In summary, the referenced studies considered the execution 

speed or the load when choosing the VM. Considering both 

simultaneously led to better results in terms of makespan, 

load balancing and resource utilisation. Considering only 

execution speed in the visibility function in Ant Colony 

Optimization (ACO) could lead to biased decision-making by 

the artificial ants. This bias will result in suboptimal load 

balancing because other important factors, such as resource 

availability and data required for tasks, are not taken into 

account. Again, solely focusing on load in the visibility 

function may overlook other factors that affect task execution, 

such as execution speed or resource availability. Leading to 

an unbalanced utilisation of resources.  

While (4), (5), and (9) work upon execution speed, their 

heuristic functions fall short of encompassing the broader 

search space. Previous researchers in (Tawfeek et al., 2013; 

Chandrashekar et al., 2023; Moon et al., 2017; Junyu & 
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Lichen, 2018) primarily focused on minimising makespan, 

resulting in only partial load balancing. In contrast, (Liu et al., 

2019; Chaharsooghi & Kermani, 2008) employed 

evolutionary algorithms to expand the search space. 

Additionally, (Lin et al., 2019) utilised the Analytic 

Hierarchy Process (AHP) as a statistical method to predict 

node failures and enhance reliability. Furthermore, the study 

by (Selvan et al., 2009) is dedicated to reducing the costs. 

García et al., (2024) is theoretical work on ACO for parallel 

computation, and (Scianna, 2024; Okrah et al., 2024; Xu et 

al., 2023) are implementations of ACO for specific 

applications. 

C. Comparative Analysis 

The types of modifications possible to ACO, along with its 

objectives and effects on task scheduling, are summed up in 

TABLE I below. 

TABLE I POTENTIAL MODIFICATIONS IN ACO 

 Modification Objective Impact  

1 Pheromone update rule Improves convergence speed and solution 

quality 

Introduces dynamic pheromone updates based on task 

characteristics 

2 Local search heuristics Enhances the exploitation of local search 

space 

Incorporates additional heuristics for local optimisation 

3 Task priority  Addresses task priority in scheduling Introduces priority-based decision rules for task allocation 

4 Dynamic parameter adaption Improves algorithm adaptability and 

performance 

Adapts dynamically based on the evolving workload 

5 Hybridisation with heuristic 
methods 

Combine ACO with other optimisation 
techniques 

Integrate ACO with heuristics for better performance 

6 Multi-objective optimisation Optimise multiple objectives simultaneously Extends ACO for multiple parameters 

7 Communication overhead 

reduction 

Minimise communication overhead Address networking challenges 

In accordance with TABLE I, the current state of the 

specified modifications is discerned in each of the cited 

papers and succinctly presented in TABLE II for expeditious 

comparison of the literature review. 

III. PROPOSED METHOD 

A. Problem Statement 

This research paper proposes an innovative approach to 

address the multi-objective task scheduling problem using 

Ant Colony Optimization through modified visibility and 

heuristic functions. The proposed methodology involves 

adopting a new strategy for visibility and heuristic functions 

and setting up pheromone update rules to allocate tasks based 

on resource availability(threshold) across virtual machines 

(VMs). The primary objective is to enhance three critical 

time-related parameters: makespan, network latency, and 

load balance. 
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[2] ACO           

[3] MO-ACO              

[4] HWACOA                    

[5] TCLB-GAAC                    

[6] ACO-MCMS                    

[7] MORAP                 

[8] SACO                 

[9] PARALLEL - ACO                       

[10] LBACO                       

[11] IMPROVED ACO    
    

 
   

[15] PBACO           
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B. Mathematical Formulation 

The proposed Enhanced Load-Balanced ACO (ELB-ACO) 

framework is based on the following assumptions regarding 

the cloud infrastructure: 

• Tasks are assumed to be queued up at the broker level 

and are assigned to available virtual machines (VMs) 

for execution in batches. The size of the task queue is 

varied from 10 to 1000. 

• While the actual cloud environment comprises a vast 

number of VMs, only a subset of it is considered in 

this study. 

• The heterogeneous nature of the cloud is depicted 

through variations in the number of processors, 

execution speeds, and bandwidth capacities. 

• Tasks varying in length and file sizes are considered 

within the framework. 

In every batch of tasks queued for processing at the broker, 

the following variables are defined. 

Number of tasks: n 

Number of virtual machines (VMs): m 

Execution speed of the ith VM: ESi in MIPS 

Number of processors in the ith VM: Pi  

Length of the jth task: Lj in MIs 

Load share of the ith VM: LSi in MIs 

Computing load of the ith VM: Loadi in MIs 

Where,  

 𝐿𝑜𝑎𝑑𝑖 = ∑ L𝑘𝑘∈𝑖       (12) 

The computing power of ith VM = ESi * Pi =CPi MIPS 

 LSi = ∑ Lj
n
j=1 ∗ (CPi/ ∑ CPi

m
i=1 )   (13) 

Similarly,  

File size of jth task: FSj Bits 

Bandwidth of ith VM (machine): BWi in kbps  

Transmission Time of jth task to ith VM: Tij  

Where, 

 Tij = FSj / BWi seconds 

Transmission load of ith VM: TRi bits 

Where, 

 TRi = ∑ Tikk∈i      (14) 

The transmission share of ith VM (machine) is, 

  TSi = ∑ FSj
n
j=1 ∗ (BWi/ ∑ BWi

m
i=1 )  (15) 

The heuristic function is set as: 

𝜂𝑖𝑗 = 0.5 ∗ (𝐿𝑆𝑖 − 𝐿𝑖)/𝐿𝑆𝑖 + 0.5 ∗ (𝑇𝑅𝑖 − 𝑇𝑖)/𝑇𝑅𝑖  (16) 

Giving equal weightage to both execution time and 

transmission time. 

The initial pheromone is set as: 

 τij = (ESi ∗ Pi)      (17) 

The basic pheromone update rule is set as follows: 

 τij = (1 − ρ) ⋅ τij + ∑ Δτij
k

k∈ants     (18) 

Where ρ is the pheromone evaporation rate, and Δτij is the 

amount of pheromone deposited by ants on edge (i, j). 

The transition rule for choosing the next available resource 

for allocation is:  

pij =
τij

α⋅ηij
β

∑ τik
α

k∈allowed ⋅η
ik
β      (19) 

Where Pij(t) is the probability of moving from node i to node 

j at time t, α and β are parameters controlling the influence of 

pheromones and heuristic information, and ηij is the heuristic 

information. Proposed Algorithm shown in fig. 1 below. 

C. Proposed Algorithm 

 

Fig. 1 Proposed Algorithm 

Algorithm 1: Proposed Algorithm - Resource-Aware 

Load Balancing for Time-Critical Applications  

(RALB-TCA) 

 

Initialize the Parameters 

for each VMi ( i ranging from 1 to m) 

   {Computing Power of VMi  = CPi  = ESi * Pi 

     Load Share of VMi             =  𝐿𝑆𝑖  

                                                 =  ∑ 𝐿𝑗
𝑛
𝑗 =1 ∗ (𝐶𝑃𝑖/ ∑ 𝐶𝑃𝑖

𝑚
𝑖=1 ) 

     For each Task Tj (j ranging from 1 to n) 

        Transmission Time for Tj =  FSj /BWi  

 Initialial Pheromone, 
                                           τij(0 ) = 1/(ESi ∗ Pi)     

     Transmission Share of VMi  =  𝑇Si  

                                                  = ∑ FSj
n
j=1 ∗ (BWi/

∑ BWi
m
i=1 ) 

   } 

Start 

{for each iteration (ITER) 

   { for each ant (A)  

         { for each task Tj (j ranging from 1 to n) 

          Select VM with highest Pheromone 

 Insert the seelected task in tabu list 

                allowedk ={0,1,…,n-1}-tabuk  

 Update pheromone (eq. (16)) 

 Update heuristic (eq. (14))  

           } 

         Compute makespan 

         Compute total transmission time 

         Clear the tabu list 

    } 

Choose the best results   

} 

End           

  



N.A. Suvarna and Deepak Bharadwaj 

IJISS Vol.14 No.2 April-June 2024 172 

The basic ACO is modified with respect to the visibility 

function ηij and the initial pheromone τ. The artificial ants, 

unlike real ants, are not blindfolded. They are made 

intelligent in choosing the resources through heuristic 

function. The heuristic in this paper is modified to 

accommodate two main time-critical parameters for 

optimisation and load balancing. The factors considered are:  

1. Completion Time (Makespan). 

2. Data Transfer Time (DTT). 

A linear function with an equal weightage of 50% for each of 

these two parameters is formed as in (16). 

The formula adapted ensures that the computing load on any 

VM does not exceed its capacity (processing share). At the 

same time, it also ensures that the data to be transferred does 

not exceed the transmission capability of the VM. Also, the 

load allocated (computing load or transmission load) is 

considered in the calculation. The heuristic value is also 

checked at every step to ensure that it does not become 

negative. If the value goes negative, it is changed to zero 

value. 

The flowchart of the proposed algorithm is explained in 

Figure 2 below. 

D. Proposed Model 

The cloud environment is simulated using a small cluster of 

the cloud infrastructure to implement the algorithms under 

investigation. The physical cloud system encompasses a vast 

collection of geographically dispersed computing devices 

networked together. In our study, we focus on a subsection or 

cluster of this network located at a single data centre, 

comprising a limited number of computing nodes. Cloudlets 

or tasks are dynamically batch-processed in real-time, with 

centralised task allocation occurring at the broker level. The 

framework of the representative cloud infrastructure for 

implementation is indicated in Figure 3. 

 

Fig. 2 Flowchart of the proposed algorithm 
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Initialize the parameters 

Randomly place the ants on schedule space 
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Set Task = 1 

Calculate the probability of choosing the next VM 

& 

Move the ant to the VM with highest probability 

Update Pheromone on the current Task-VM pair 

Evaporate the pheromone on all other Task-VM pairs 
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Fig. 3 Framework of Cloud Environment for Implementation 

IV. EXPERIMENTAL RESULTS 

The algorithm offered in this study is instantiated and 

executed utilising the Cloud Sim Toolkit, a Java-based 

simulation framework designed for the modelling of cloud 

computing environments. The simulated infrastructure 

encompasses data centres, brokers, and virtual machines, 

each endowed with virtualised computing resources that 

holistically represent the pertinent entities in the simulated 

cloud ecosystem. 

The tasks enqueued within the broker are systematically 

allocated for execution across the extant virtual machines in 

accordance with the prescribed algorithm. In order to 

substantiate the superior efficacy of the proposed algorithm, 

an identical set of tasks is subjected to the ACO algorithm 

delineated in [3], and the ensuing outcomes derived from 

these two algorithmic frameworks are explicated through 

graphical representation in the ensuing figures. 

The task quantity varies across three distinct data sizes: 10, 

100, and 1000. The task lengths are randomly assigned within 

the range of 1,00,000 to 50,00,000 million instructions. 

The three Virtual Machines are set with the important 

parameter values as indicated in TABLE III below. 

TABLE III COMPUTING POWER OF VMs 

VM Execution Speed 

(MIPS) 

Processors Computing 

Speed (MIPS) 

1 1024 1 1024 

2 2048 2 4096 

3 3072 3 9216 

TABLE IV indicates the resulting task distribution among the 

three available virtual machines (VMs) when subjected to 

two algorithms: the algorithm outlined in (Guo, 2017).  and 

the novel approach proposed in this study.  

 

TABLE IV DISTRIBUTION OF TASKS AMONG VMs 

Tasks VM 
Number of Tasks 

RALB-TCA ACO 

10 

0 1 7 

1 1 1 

2 8 2 

100 

0 27 52 

1 36 22 

2 37 26 

1000 

0 191 927 

1 381 14 

2 428 59 

A. Makespan 

The time required by each virtual machine (VM) to complete 

the execution of its allocated tasks is detailed in TABLE V 

below, categorised by data size. The makespan metric is 

obtained from this table. The makespan, implying the 

maximum duration experienced by the slowest virtual 

machine (VM), introduces a consequential waiting interval 

for other VMs which have completed executing their tasks in 

advance. This metric serves as a key indicator, offering 

awareness about job completion times.  

TABLE V COMPLETION TIME OF TASKS 

Tasks VM 
Completion Time in Seconds 

RALB-TCA ACO 

10 

0 308.2 16666.0 

1 242.5 879.0 

2 2353.4 252.8 

100 

0 8497.8 15360.0 

1 2814.4 1895.7 

2 1226.4 872.0 

1000 

0 399820.0 1949095.0 

1 200132.9 8297.9 

2 100247.5 13365.9 

By considering the maximum completion time for each data 

size from TABLE V, the makespan metric is derived as 

shown in TABLE VI below. 

TABLE VI MAKESPAN 

Tasks 

Makespan in Seconds Makespan in 

Minutes 

RALB-

TCA 

ACO RALB-

TCA 

ACO 

10 2353.4 16666.0 39 278 

100 8497.8 15360.0 142 256 

1000 399820.0 1949095.0 6664 32485 

The data provided in TABLE VI, illustrating the makespan in 

minutes, is graphically depicted in Figure 4 for data sizes 10, 

100, and 1000. The graphs demonstrate the reduction in 

makespan achieved by the proposed algorithm across all data 

sizes when compared to the referenced algorithm (Guo, 2017). 

The improved makespan is an indication of improved CPU 

throughput. 

 

DATACENTER 
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Fig. 4 Makespan 

B. Data Transfer Time (Network Latency) 

Tasks are defined by an attribute known as "File Size," which 

signifies the volume of data to be transmitted during task 

execution. Similarly, each virtual machine (VM) is defined 

by a parameter known as "Bandwidth," denoting the 

maximum achievable data transfer rate between the VM and 

other components within the cloud infrastructure, including 

storage devices, other VMs, or external networks. By 

correlating the file size of a task with the bandwidth of a VM, 

the duration required for data transfer to complete the task is 

established. This data transfer time is also called 

"Communication Overhead" or "Network Latency". 

The data transfer time consumed by each virtual machine 

(VM) as a consequence of task allocation per the algorithm is 

presented in TABLE VII below. The results are listed for 

each data size comprising tasks in numbers 10, 100, and 1000. 

TABLE VII DATA TRANSFER TIME OF TASKS 

Tasks VM 

Data Transfer Time in 

Seconds 

RALB-

TCA 

ACO 

10 0 16.0 223.0 

1 0.5 128.0 

2 112.0 32.0 

100 0 3186.0 3739.0 

1 1245.5 704.8 

2 229.1 408.0 

1000 0 20059.0 95062016.0 

1 9496.0 1753088.0 

2 4917.4 2062306.0 

Data transfer time denotes the temporal investment essential 

for transmitting task execution essential files from the broker 

to the virtual machine (VM). In heterogeneous environments, 

VMs exhibit disparate bandwidth capacities.  

In a heterogeneous environment characterised by virtual 

machines with varying bandwidth capacities and tasked with 

a diverse set of operations entailing varied data transfer 

durations, the VM that concludes data transfer most 

expeditiously may encounter a waiting period until all other 

VMs complete their respective tasks. This scenario inherently 

contributes to network latency, determined by the VM 

experiencing the most extended data transfer duration. 

Consequently, TABLE VIII is derived from TABLE VII to 

delineate network latency. 

TABLE VIII DATA TRANSFER TIME (NETWORK LATENCY) 

Tasks 

DTT in Seconds DTT in Minutes 

RALB-

TCA 

ACO RALB-

TCA 

ACO 

10 112 223 2 4 

100 3186 3739 53 62 

1000 20059 95062016 334 1584366 

The data provided in TABLE VIII, illustrating the network 

latency in minutes, is graphically depicted in Figure 5 for data 

sizes of 10, 100, and 1000. The graphs clearly demonstrate 

the improved network latency achieved by the proposed 

algorithm across all data sizes compared to the referenced 

algorithm (Guo, 2017). 

 

Fig. 5 Network Latency 

C. CPU Utilisation 

CPU utilisation factor in cloud computing refers to the 

measure of the extent to which the central processing unit 

(CPU) of a virtual machine or physical server is utilised over 

a given period of time. With our proposed methodology, we 

aim to propose optimal utilisation of the CPU. 

CPU utilisation factor provides insights into the efficiency 

and performance of the system. High CPU utilisation 

indicates that the CPU operates close to its maximum 

capacity, which may lead to performance degradation or 

resource contention. On the other hand, low CPU utilisation 

suggests that the CPU is underutilised, which may indicate 

inefficient resource allocation or provisioning. Our algorithm, 

along with prioritising time-critical solutions, also 

demonstrates optimal CPU utilisation across VMs. 

TABLE IX is the result obtained for CPU utilisation against 

the available computing time. Mathematical calculations 

involved to arrive at the available computing time are 

mentioned below for a sample case. 

TABLE IX UTILISATION OF CPU 

Task

s 

V

M 

Computing Time in Seconds 

Available Utilised 

RALB-TCA ACO 

10 

1 1642677 315575 17066376 

2 6570710 993469 3601002 

3 14784097 21688441 2330107 

100 

1 2252276 8701733 15728753 

2 9009103 11527637 7764563 

3 20270483 11302492 8038546 

1000 

1 153788680 409415764 1.996E+09 

2 615154722 819744706 33988255 

3 1384098124 923881056 123180106 
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The computation of available computing time for each 

Virtual Machine (VM) is determined through the following 

steps: 

1. Compute the total length of tasks in Millions of 

Instructions (MI). 

2. Determine the execution speed of each VM in Millions of  

Instructions Per Second (MIPS). 

3. Calculate the time required for task completion by 

dividing the value obtained in step 1 by the value obtained 

in step 2. 

4. Determine the Load Share in MIs that each VM can 

execute for the duration of time obtained in step 3. 

1) Sample Calculation for 100 Tasks 

Total task lengths amount to 31,531,862 Million Instructions 

(MIs). The computing speed of each Virtual Machine (VM) 

is calculated by multiplying the execution speed by the 

number of processors. 

VM1 has a computing speed of 1,024 MIPS with one 

processor.  

VM2 has a computing speed of 4,096 MIPS with two 

processors.  

VM3 has a computing speed of 9,216 MIPS with three 

processors.  

The total computing speed equals 14,336 MIPS. 

The time required for completion is determined by dividing 

the total task lengths by the total computing speed, resulting 

in 2,199 seconds. 

The load share of VM1 is calculated by multiplying its 

computing speed (1,024 MIPS) by the time required for 

completion (2,199 seconds), yielding 2,252,275.9 MIs. 

Now, TABLE X is an extension of the calculations of            

Table IX to express the utilisation of computing time as a 

percentage of the available power to arrive at a degree of 

utilisation. 

TABLE X DEGREE OF UTILISATION OF COMPUTING POWER 

Tasks VM RALB-

TCA 

ACO 

10 

 

1 20% 1040% 

2 20%  50% 

3 150% 20% 

100 

 

1 390% 700% 

2 130% 90% 

3 60% 40% 

1000 

1 270% 1300% 

2 130% 10% 

3 70% 10% 

The graphical representation of the data of TABLE X, 

depicting the degree of computing time used by the CPUs of 

virtual machines, is illustrated in the following Figures 6, 7, 

and 8. 

 

Fig. 6 Degree of Utilisation of Computing Power for Ten Tasks 

 

Fig. 7 Degree of Utilisation of Computing Power for 100 Tasks 

 

Fig. 8 Degree of Utilisation of Computing Power for 1000 Tasks 

In the pursuit of harmonising computational and transmission 

loads while concomitantly endeavouring to minimise the 

makespan, virtual machines (VMs) do not achieve full 

exploitation of their operational capacities. The undesirable 

consequence of deviating from optimal utilisation manifests 

as an underutilisation of other available VMs. The graphical 

representation in Figure 6, Figure 7, and Figure 8 illustrates 

that, across diverse data sizes, the curve associated with the 

proposed algorithm exhibits a more plateaued profile when 

contrasted with the conventional Ant Colony Optimization 

(ACO). This characteristic denotes a more equitable 

workload distribution among VMs, thereby enhancing the 

system's overall efficiency. 
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V. DISCUSSION 

The experimental findings demonstrated enhancements in the 

performance of the RALB-TCA algorithm concerning both 

completion time (CPU throughput) and data transfer time 

(network latency) associated with the transfer of requisite 

files for task execution while maintaining load balance across 

virtual machines. The time-critical metrics such as makespan, 

CPU utilisation (throughput), and network latency showed 

drastic improvements compared to the improvements 

referenced to ACO (Guo, 2017). In a cloud setup with virtual 

machines having drastic variations in characteristics, the 

balance in the loads is essential to lower the amount of 

waiting time for the slowest machine to complete its 

operation. The plateaued graphs indicate improved balance in 

computing time and network latency.  

The experiment assigned equal weightage to these parameters. 

However, tailoring them to the specific demands of an 

application is likely to yield superior outcomes. The 

additional computational overhead incurred in pre-execution 

heuristic function calculations may be disregarded when 

dealing with large datasets, as is commonly encountered in 

cloud computing.  

Moreover, prioritising tasks based on their length, 

particularly by addressing longer tasks first, can lead to a 

more balanced distribution of workloads and improved 

resource use. This method has the potential to reduce idle 

times and enhance throughput. 

Incorporating elements like job prioritisation, deadlines, fault 

tolerance, and service level agreements (SLAs) can improve 

the performance of meta-heuristic algorithms. It can be 

integrated with RALB-TCA in real-world applications. These 

factors allow for more flexible and adaptive scheduling, 

enhancing the algorithm's ability to handle complex and 

large-scale cloud computing scenarios. 

VI. CONCLUSION 

The exposition of the research presented in this document 

points out the efficiency of the RALB-TCA algorithm, which 

improves different facets of task scheduling for cloud 

computing. The new threshold-based algorithm that 

introduces a visibility and heuristic function to be modified 

by it is discussed in detail. Through our work, we paid 

particular attention to some performance metrics— 

makespan, data transfer time, load balance and CPU 

utilisation.  

The modified implementations and algorithmic 

improvements have proven adept at efficiently allocating 

tasks and minimising communication overhead, significantly 

reducing data transfer times. This is particularly 

advantageous for applications with large datasets and 

intricate task dependencies. Changes in deployment, along 

with algorithmic improvements, have proven to enhance task 

allocation effectiveness without reducing the time taken to 

transfer data. These modified implementations would, 

therefore, be more appropriate to use for applications that 

deal with large datasets as well as task dependencies due to 

their success. 

To sum up, we find evidence suggesting that the RALB-TCA 

algorithm can drive improved system performance. 

Prospective efforts might delve into more tweaks and 

practical adoptions of this proposed algorithm within 

different cloud computing landscapes, seeking optimal 

resource utilisation while meeting user quality requirements 

under varied operational conditions. 
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