
167 IJISS Vol.14 No.2 April-June 2024

Indian Journal of Information Sources and Services

ISSN: 2231-6094 (P) Vol.14, No.2, 2024, pp.167-177

© The Research Publication, www.trp.org.in

DOI: https://doi.org/10.51983/ijiss-2024.14.2.24

Optimization of System Performance through Ant Colony Optimization:

A Novel Task Scheduling and Information Management Strategy for

Time-Critical Applications

N.A. Suvarna1 and Deepak Bharadwaj2

1Research Scholar, Computer Science Engineering SOES, GD Goenka University, India
2Associate Professor, Computer Science Engineering SOES, GD Goenka University, India

E-mail: 1suvarna07.aradhya@gmail.com, 2deepak.bharadwaj@gdgu.org

ORCID: 1https://orcid.org/0000-0002-1578-4587, 2https://orcid.org/0000-0003-0366-5449

(Received 17 April 2024; Revised 19 May 2024, Accepted 10 June 2024; Available online 28 June 2024)

Abstract - Optimization of task scheduling and information

storage/retrieval is crucial for managing resource utilization,

which enhances system performance and ultimately impacts

provider productivity and customer satisfaction. Efficient task

scheduling aims to optimize computing time, while efficient

information management focuses on maximizing memory usage.

This paper presents a novel approach to task scheduling using

Ant Colony Optimization (ACO) to improve time-critical

objectives such as makespan and network latency, while

maintaining balanced load distribution across systems. By

enhancing makespan, we aim to maximize CPU utilization, and

by optimizing information storage/retrieval, we target

minimizing network latency. Performance across these multiple

objectives is achieved by modifying the heuristic and visibility

functions to guide ants toward specific solutions. The

effectiveness of the proposed algorithm, Resource-Aware Load-

Balancing for Time-Critical Applications (RALB-TCA), is

demonstrated through implementation in the CloudSim

simulation platform and benchmarking against existing

techniques.

Keywords: Ant Colony Optimisation, Makespan, Load Balance,

Network Latency, Resource Utilization, Task Scheduling

I. INTRODUCTION

The networked computers helps in delivery of IT services

through internet. Tasks are distributed for optimizing

resources by matching the demands and availability. Efficient

task scheduling plays a significant role as it leads to

improvement in overall system performance. This is achieved

through optimization of multiple objectives such as:

completion time (makespan), data transfer time (network

latency) and CPU utilization. It ultimately results in

timeliness of services by the provider. Additionally,

maintaining balance of loads across virtual machines (VMs)

pave way for fault tolerant systems resulting in increased

customer reliability on the provider for uninterruptable

services.

Ant Colony Optimization is chosen for the study as it is a

meta-heuristic, multi-objective and decentralized algorithm.

It is an algorithm based on the ant's behaviour related to their

search for food. It has been progressively used in task

scheduling due to its ability to optimise multiple objectives

and adapt to the dynamic nature of the cloud and its

decentralised operation by balancing exploration and

exploitation. Its decentralised decision-making helps to

increase scalability and fault tolerance in cloud systems.

Extensive modifications have been introduced in this

algorithm by researchers in the past to seek better results. To

summarize, it has the following characteristics.

• It can be applied to any general problem.

• It can explore new solutions and also utilize known

solutions.

• Randomly search the solution space.

• Iteratively improve the solutions.

• It can optimize multiple parameters.

• It can work in decentralized manner.

• It is adaptive to changing environments.

In this research, we propose a metaheuristic, multi-objective,

resource-aware load-balanced ant colony optimisation

algorithm for time-critical applications in cloud computing.

The proposed algorithm provides a pareto-optimal solution

for resource allocation by minimising makespan and network

latency while maintaining load balance across the entire

system. The proposed algorithm is simulated using the

CloudSim simulator. Experimental results are compared with

previously suggested improvements for Ant Colony

Optimization.

The organisation of the paper is as mentioned below.

Section - II is on the related works. Section III gives insights

into the proposed system and algorithm. Section IV details

the simulation results obtained from the implementation and

its analysis. Section V demonstrates and analyse the results,

and Section VI concludes this paper.

http://www.trp.org.in/
mailto:1firstauthor@first.edu

N.A. Suvarna and Deepak Bharadwaj

IJISS Vol.14 No.2 April-June 2024 168

II. RELATED WORKS

A. Background and Context

Many modern computing paradigms have emerged out of

Distributed Computing, such as the Internet of Things (IoT),

Mobile Computing, Edge Computing, Grid Computing, and

Fog Computing (Eiriemiokhale & Olutola, 2023). They have

gained popularity in recent times and have opened a number

of challenges and research opportunities (De Donno et al.,

2019). Task allocation and resource provisioning still remain

issues in native cloud computing and its derived variants

without standard norms. Numerous researchers have

attempted to optimise resources using Ant Colony

Optimization (ACO).

In the Ant Colony Optimization (ACO) approach, artificial

ants traverse a solution space representing various scheduling

possibilities. In real ants, pheromones are chemicals that are

released to communicate with each other. These signals help

ants coordinate their movements and work together on

complex tasks, like finding the best path to a food source.

In ACO, artificial ants represent possible solutions. They

deposit pheromones along their paths. Pheromones in ACO

represent the intermittently updated functions that guide

towards attractive solutions. The more pheromones there are,

the more likely the ants will follow them. Over time, paths

with higher pheromone levels become more attractive,

guiding towards optimal solutions.

In ACO, pheromones let artificial ants share information and

work together indirectly. This helps them explore and use

solution spaces efficiently, like real ants.

ACO is very flexible and practical for solving complex

problems. For example, it can manage data flow from sensors

to central servers in IoT networks, optimising path selection,

load balancing, and energy consumption. Combining ACO

with IoT communication and security technologies makes it

worthwhile in various fields (Bobir et al., 2024). Its ability to

handle complex, dynamic, multi-objective, and uncertain

optimisation tasks, along with its scalable and bio-inspired

design, makes it valuable in logistics, transportation,

telecommunications, and engineering.

Using ACO for task scheduling in large setups such as cloud

environments paves the way for dynamic and adaptive

solutions, considering everchanging workloads and resource

availability. By imitating cooperative behaviours, the

algorithm explores various solution spaces, leading to

practical task assignments that enhance cloud-based

operations' efficiency. Ants make decisions based on

pheromone levels, indicating solution quality and heuristic

information. Pheromones influence other ants' choices, and

through multiple iterations inspired by the ant's behaviour,

the ACO algorithm converges on an optimal or near-optimal

schedule through iterative evaluation.

Multi-Objective ACO (MO-ACO) aims to optimise several

objectives simultaneously using a heuristic function. The

resulting Pareto Optimal Solution represents a state where

resources are efficiently allocated, and any further

improvements would require trade-offs in another area.

This paper implements such a multi-objective optimisation

algorithm for time-critical objectives such as:

1. Makespan

2. Load Balance and

3. Network Latency

In ant colony optimisation, the visibility function is crucial in

directing ants to make informed choices regarding the

attractiveness of available paths. The heuristic function

provides additional guidance, helping ants assess the

potential quality of a solution. This knowledge complements

the visibility function, enabling ants to identify which paths

are worth exploring with greater precision.

The algorithm presented in this paper builds a heuristic

function to improve visibility in ant colony optimisation,

aiding in the selection of suitable resources (Elfarra et al.,

2023). The heuristic is selected to consider the amount of

available resources on individual virtual machines (VMs).

Given that any cloud environment consists of heterogeneous

nodes, the devised heuristic yields improved outcomes. This

assertion is validated through the execution of the algorithm

on cloudsim and by comparing the results with those of prior

studies.

B. Literature Review

Several research papers on task scheduling through Ant

Colony Optimization are studied with specific emphasis on

the design of visibility and heuristic functions. The key

findings are outlined below.

Tawfeek et al., (2013) proposed a heuristic function, which is

the inverse of the execution speed of the task on a particular

VM. So, the lesser the execution speed, the higher the

probability of choosing that VM. The objective function is set

to minimise only makespan.

The visibility function is given by:

 ηij = 1/dij (1)

Where,

𝑑𝑖𝑗 = 𝑇𝑎𝑠𝑘𝐿𝑒𝑛𝑔𝑡ℎ/𝐸𝑥𝑒𝑐𝑆𝑝𝑒𝑒𝑑 + 𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒/𝐵𝑎𝑛𝑑𝑊𝑖𝑑𝑡ℎ (2)

The pheromone update rule is set as follows:

Δτij
k(t)  =  Q/Lk(t). (3)

Where k is the iteration number, τij is the incremental

pheromone deposited by the ant while assigning task i to

resource j, Q is a pheromone constant, and L is the expected

makespan for the tour. The comparison is made with basic

algorithms such as Round Robin and FCFS to demonstrate

the improved performance.

Optimization of System Performance through Ant Colony Optimization: A Novel Task Scheduling and Information Management Strategy

for Time-Critical Applications

169 IJISS Vol.14 No.2 April-June 2024

Guo, (2017) proposes to improve both makespan and

communication overhead by defining the objective function

in terms of linear weights and heuristic function to choose the

most suitable

VM is:

 𝜂𝑖𝑗 = 𝐿𝑜𝑎𝑑𝑗 ∗ 1/𝑒𝑡𝑖𝑗 (4)

Where etij is the execution time of task j on ith machine. And

Loadj is given by

 𝐿𝑜𝑎dj = 1 − (Ej − Eavg)/ ∑ Ejj∈VM (5)

Where Ej is the execution time of the virtual machine, and Eavg

is the average execution time of the Virtual machines.

Chandrashekar et al., (2023) presented a hybrid weighted

ACO. The author defines the heuristic function as,

 ηij  =  α  ∗  makespan  +  β  ∗  cost (6)

The makespan of the individual VM is calculated as follows:

 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(Mij) = Sij + WTij(t) + ECij(t) (7)

Where S is the time of submission of the task to the VM, WT

is the waiting time, and EC is the execution time of the task.

Then, the final makespan is calculated as per the following

equation:

 Makespan = ∑ ∑ (Mij)
m
j=1

n
i=1 (8)

Liu et al., (2019) employ the genetic algorithm for initialising

the pheromone and a search algorithm based on ACO, which

facilitates accelerated convergence. Subsequently, to mitigate

the risk of the algorithm being trapped in local optima, they

suggest the random rule for selecting the subsequent node

along the path. Furthermore, they propose a weighted

constraint function that considers both time and cost. To

determine the weighting of cost and time, they utilise the

Analytic Hierarchy Process (AHP).

Lin et al., (2019) use ACO-MCMS (Multi-Objective of

Container Microservice Scheduling) to consider the

optimisation of transmission overhead, load balancing, and

reliability as a measure of the failure rate of the servers. The

authors suggested a scheduling algorithm to solve container

microservices in clusters.

Chaharsooghi et al., (2008) utilised a Multiple Objective

Evolutionary Algorithm to enhance scheduling operations by

minimising costs and time while optimising resource

utilisation and balancing the load. They employed the

Tencent model for cost calculation for bandwidth and flow

rate. However, the algorithm demonstrated poor resource

utilisation.

Moon et al., (2017) implemented slave Ant Colony

Optimization (SACO), which is a diversification of

probability parameters for slave ants, reducing their

dependency on other ants. With updated makespan

information, one ant is designated as a typical ant, exhibiting

the best makespan for the group. The remaining ants become

slave ants. Subsequently, a local pheromone is updated.

Selvan et al., (2009) modelled the scheduling problem as a

directed acyclic graph (DAG), with tasks representing nodes

and edges indicating task transmissions between nodes. This

graph representation imposes task dependencies and

precedence rules, stating the sequence of subtask completion.

The authors propose Ant Colony Optimization (ACO) to

minimise both makespan and latency overheads. The

heuristic function wraps both computation and latency costs.

Sharma & Garg, (2022) introduced a QoS-based task

scheduling using ACO by modifying the load balancing

factor in the heuristic function in comparison to (3) as:

LBj = 1 − (Ej − Eavg)/(Ej + Eavg) (9)

Junyu & Lichen, (2018) recommended a simple heuristic

function:

 RT = ∑ RTi
k
i=1 (10)

Where RT is the Runtime and K corresponds to the number

of jobs on the specified virtual machine. Then, the final

runtime is selected as the maximum runtime, and the other

VMs are made to wait for the slowest/overloaded processor

to finish (Santhosh & Prasad, 2023).

Zuo et al., (2015) proposed performance and budget

optimisation through ACO (PBACO) to improve makespan,

resource utilisation, and user costs. The authors provide a

technique for the problem of ACO's solution falling into the

local optima through a fitness function based on performance

and cost. This fitness function is then used to evaluate the

quality of possible solutions. The fitness function is:

 Fit(x) = γ ∗ e−F(x) + δ ∗ e−B(x) (11)

Where  and  are the performance and cost weight factors,

and F(x) and B(x) are the performance and cost functions,

respectively.

In summary, the referenced studies considered the execution

speed or the load when choosing the VM. Considering both

simultaneously led to better results in terms of makespan,

load balancing and resource utilisation. Considering only

execution speed in the visibility function in Ant Colony

Optimization (ACO) could lead to biased decision-making by

the artificial ants. This bias will result in suboptimal load

balancing because other important factors, such as resource

availability and data required for tasks, are not taken into

account. Again, solely focusing on load in the visibility

function may overlook other factors that affect task execution,

such as execution speed or resource availability. Leading to

an unbalanced utilisation of resources.

While (4), (5), and (9) work upon execution speed, their

heuristic functions fall short of encompassing the broader

search space. Previous researchers in (Tawfeek et al., 2013;

Chandrashekar et al., 2023; Moon et al., 2017; Junyu &

N.A. Suvarna and Deepak Bharadwaj

IJISS Vol.14 No.2 April-June 2024 170

Lichen, 2018) primarily focused on minimising makespan,

resulting in only partial load balancing. In contrast, (Liu et al.,

2019; Chaharsooghi & Kermani, 2008) employed

evolutionary algorithms to expand the search space.

Additionally, (Lin et al., 2019) utilised the Analytic

Hierarchy Process (AHP) as a statistical method to predict

node failures and enhance reliability. Furthermore, the study

by (Selvan et al., 2009) is dedicated to reducing the costs.

García et al., (2024) is theoretical work on ACO for parallel

computation, and (Scianna, 2024; Okrah et al., 2024; Xu et

al., 2023) are implementations of ACO for specific

applications.

C. Comparative Analysis

The types of modifications possible to ACO, along with its

objectives and effects on task scheduling, are summed up in

TABLE I below.

TABLE I POTENTIAL MODIFICATIONS IN ACO

 Modification Objective Impact

1 Pheromone update rule Improves convergence speed and solution

quality

Introduces dynamic pheromone updates based on task

characteristics

2 Local search heuristics Enhances the exploitation of local search

space

Incorporates additional heuristics for local optimisation

3 Task priority Addresses task priority in scheduling Introduces priority-based decision rules for task allocation

4 Dynamic parameter adaption Improves algorithm adaptability and

performance

Adapts dynamically based on the evolving workload

5 Hybridisation with heuristic
methods

Combine ACO with other optimisation
techniques

Integrate ACO with heuristics for better performance

6 Multi-objective optimisation Optimise multiple objectives simultaneously Extends ACO for multiple parameters

7 Communication overhead

reduction

Minimise communication overhead Address networking challenges

In accordance with TABLE I, the current state of the

specified modifications is discerned in each of the cited

papers and succinctly presented in TABLE II for expeditious

comparison of the literature review.

III. PROPOSED METHOD

A. Problem Statement

This research paper proposes an innovative approach to

address the multi-objective task scheduling problem using

Ant Colony Optimization through modified visibility and

heuristic functions. The proposed methodology involves

adopting a new strategy for visibility and heuristic functions

and setting up pheromone update rules to allocate tasks based

on resource availability(threshold) across virtual machines

(VMs). The primary objective is to enhance three critical

time-related parameters: makespan, network latency, and

load balance.

TABLE II COMPARISON OF LITERATURE WORKS

Ref Algorithm Modifications

P
h

er
o

m
o
n

e
U

p
d

at
e

R
u

le

L
o

ca
l

S
ea

rc
h

T
as

k
 P

ri
o

ri
ty

D
y

n
am

ic
 P

ar
am

et
er

A
d

ap
ti

o
n

H
y

b
ri

d
 H

eu
ri

st
ic

s

M
u

lt
i-

o
b

je
ct

iv
e

C
o

m
m

u
n

ic
at

io
n

o
v

er
h

ea
d

s

[2] ACO      

[3] MO-ACO     

[4] HWACOA   

[5] TCLB-GAAC   

[6] ACO-MCMS   

[7] MORAP    

[8] SACO    

[9] PARALLEL - ACO  

[10] LBACO  

[11] IMPROVED ACO   

  

[15] PBACO  

Optimization of System Performance through Ant Colony Optimization: A Novel Task Scheduling and Information Management Strategy

for Time-Critical Applications

171 IJISS Vol.14 No.2 April-June 2024

B. Mathematical Formulation

The proposed Enhanced Load-Balanced ACO (ELB-ACO)

framework is based on the following assumptions regarding

the cloud infrastructure:

• Tasks are assumed to be queued up at the broker level

and are assigned to available virtual machines (VMs)

for execution in batches. The size of the task queue is

varied from 10 to 1000.

• While the actual cloud environment comprises a vast

number of VMs, only a subset of it is considered in

this study.

• The heterogeneous nature of the cloud is depicted

through variations in the number of processors,

execution speeds, and bandwidth capacities.

• Tasks varying in length and file sizes are considered

within the framework.

In every batch of tasks queued for processing at the broker,

the following variables are defined.

Number of tasks: n

Number of virtual machines (VMs): m

Execution speed of the ith VM: ESi in MIPS

Number of processors in the ith VM: Pi

Length of the jth task: Lj in MIs

Load share of the ith VM: LSi in MIs

Computing load of the ith VM: Loadi in MIs

Where,

 𝐿𝑜𝑎𝑑𝑖 = ∑ L𝑘𝑘∈𝑖 (12)

The computing power of ith VM = ESi * Pi =CPi MIPS

 LSi = ∑ Lj
n
j=1 ∗ (CPi/ ∑ CPi

m
i=1) (13)

Similarly,

File size of jth task: FSj Bits

Bandwidth of ith VM (machine): BWi in kbps

Transmission Time of jth task to ith VM: Tij

Where,

 Tij = FSj / BWi seconds

Transmission load of ith VM: TRi bits

Where,

 TRi = ∑ Tikk∈i (14)

The transmission share of ith VM (machine) is,

 TSi = ∑ FSj
n
j=1 ∗ (BWi/ ∑ BWi

m
i=1) (15)

The heuristic function is set as:

𝜂𝑖𝑗 = 0.5 ∗ (𝐿𝑆𝑖 − 𝐿𝑖)/𝐿𝑆𝑖 + 0.5 ∗ (𝑇𝑅𝑖 − 𝑇𝑖)/𝑇𝑅𝑖 (16)

Giving equal weightage to both execution time and

transmission time.

The initial pheromone is set as:

 τij = (ESi ∗ Pi) (17)

The basic pheromone update rule is set as follows:

 τij = (1 − ρ) ⋅ τij + ∑ Δτij
k

k∈ants (18)

Where ρ is the pheromone evaporation rate, and Δτij is the

amount of pheromone deposited by ants on edge (i, j).

The transition rule for choosing the next available resource

for allocation is:

pij =
τij

α⋅ηij
β

∑ τik
α

k∈allowed ⋅η
ik
β (19)

Where Pij(t) is the probability of moving from node i to node

j at time t, α and β are parameters controlling the influence of

pheromones and heuristic information, and ηij is the heuristic

information. Proposed Algorithm shown in fig. 1 below.

C. Proposed Algorithm

Fig. 1 Proposed Algorithm

Algorithm 1: Proposed Algorithm - Resource-Aware

Load Balancing for Time-Critical Applications

(RALB-TCA)

Initialize the Parameters

for each VMi (i ranging from 1 to m)

 {Computing Power of VMi = CPi = ESi * Pi

 Load Share of VMi = 𝐿𝑆𝑖

 = ∑ 𝐿𝑗
𝑛
𝑗 =1 ∗ (𝐶𝑃𝑖/ ∑ 𝐶𝑃𝑖

𝑚
𝑖=1)

 For each Task Tj (j ranging from 1 to n)

 Transmission Time for Tj = FSj /BWi

 Initialial Pheromone,
 τij(0) = 1/(ESi ∗ Pi)

 Transmission Share of VMi = 𝑇Si

 = ∑ FSj
n
j=1 ∗ (BWi/

∑ BWi
m
i=1)

 }

Start

{for each iteration (ITER)

 { for each ant (A)

 { for each task Tj (j ranging from 1 to n)

 Select VM with highest Pheromone

 Insert the seelected task in tabu list

 allowedk ={0,1,…,n-1}-tabuk

 Update pheromone (eq. (16))

 Update heuristic (eq. (14))

 }

 Compute makespan

 Compute total transmission time

 Clear the tabu list

 }

Choose the best results

}

End

N.A. Suvarna and Deepak Bharadwaj

IJISS Vol.14 No.2 April-June 2024 172

The basic ACO is modified with respect to the visibility

function ηij and the initial pheromone τ. The artificial ants,

unlike real ants, are not blindfolded. They are made

intelligent in choosing the resources through heuristic

function. The heuristic in this paper is modified to

accommodate two main time-critical parameters for

optimisation and load balancing. The factors considered are:

1. Completion Time (Makespan).

2. Data Transfer Time (DTT).

A linear function with an equal weightage of 50% for each of

these two parameters is formed as in (16).

The formula adapted ensures that the computing load on any

VM does not exceed its capacity (processing share). At the

same time, it also ensures that the data to be transferred does

not exceed the transmission capability of the VM. Also, the

load allocated (computing load or transmission load) is

considered in the calculation. The heuristic value is also

checked at every step to ensure that it does not become

negative. If the value goes negative, it is changed to zero

value.

The flowchart of the proposed algorithm is explained in

Figure 2 below.

D. Proposed Model

The cloud environment is simulated using a small cluster of

the cloud infrastructure to implement the algorithms under

investigation. The physical cloud system encompasses a vast

collection of geographically dispersed computing devices

networked together. In our study, we focus on a subsection or

cluster of this network located at a single data centre,

comprising a limited number of computing nodes. Cloudlets

or tasks are dynamically batch-processed in real-time, with

centralised task allocation occurring at the broker level. The

framework of the representative cloud infrastructure for

implementation is indicated in Figure 3.

Fig. 2 Flowchart of the proposed algorithm

START

Initialize the parameters

Randomly place the ants on schedule space

Set Iteration = 1

Set Task = 1

Calculate the probability of choosing the next VM

&

Move the ant to the VM with highest probability

Update Pheromone on the current Task-VM pair

Evaporate the pheromone on all other Task-VM pairs

Update the objective function values

Are there

more tasks?

Yes

 T
a

sk
 =

 T
a

sk
 +

 1

No

Are there

more

iterations?

It
er

a
ti

o
n

 +
=

1

Yes

No

Compare the objective function values for the solutions

&

Choose the solution with best results

END

Optimization of System Performance through Ant Colony Optimization: A Novel Task Scheduling and Information Management Strategy

for Time-Critical Applications

173 IJISS Vol.14 No.2 April-June 2024

Fig. 3 Framework of Cloud Environment for Implementation

IV. EXPERIMENTAL RESULTS

The algorithm offered in this study is instantiated and

executed utilising the Cloud Sim Toolkit, a Java-based

simulation framework designed for the modelling of cloud

computing environments. The simulated infrastructure

encompasses data centres, brokers, and virtual machines,

each endowed with virtualised computing resources that

holistically represent the pertinent entities in the simulated

cloud ecosystem.

The tasks enqueued within the broker are systematically

allocated for execution across the extant virtual machines in

accordance with the prescribed algorithm. In order to

substantiate the superior efficacy of the proposed algorithm,

an identical set of tasks is subjected to the ACO algorithm

delineated in [3], and the ensuing outcomes derived from

these two algorithmic frameworks are explicated through

graphical representation in the ensuing figures.

The task quantity varies across three distinct data sizes: 10,

100, and 1000. The task lengths are randomly assigned within

the range of 1,00,000 to 50,00,000 million instructions.

The three Virtual Machines are set with the important

parameter values as indicated in TABLE III below.

TABLE III COMPUTING POWER OF VMs

VM Execution Speed

(MIPS)

Processors Computing

Speed (MIPS)

1 1024 1 1024

2 2048 2 4096

3 3072 3 9216

TABLE IV indicates the resulting task distribution among the

three available virtual machines (VMs) when subjected to

two algorithms: the algorithm outlined in (Guo, 2017). and

the novel approach proposed in this study.

TABLE IV DISTRIBUTION OF TASKS AMONG VMs

Tasks VM
Number of Tasks

RALB-TCA ACO

10

0 1 7

1 1 1

2 8 2

100

0 27 52

1 36 22

2 37 26

1000

0 191 927

1 381 14

2 428 59

A. Makespan

The time required by each virtual machine (VM) to complete

the execution of its allocated tasks is detailed in TABLE V

below, categorised by data size. The makespan metric is

obtained from this table. The makespan, implying the

maximum duration experienced by the slowest virtual

machine (VM), introduces a consequential waiting interval

for other VMs which have completed executing their tasks in

advance. This metric serves as a key indicator, offering

awareness about job completion times.

TABLE V COMPLETION TIME OF TASKS

Tasks VM
Completion Time in Seconds

RALB-TCA ACO

10

0 308.2 16666.0

1 242.5 879.0

2 2353.4 252.8

100

0 8497.8 15360.0

1 2814.4 1895.7

2 1226.4 872.0

1000

0 399820.0 1949095.0

1 200132.9 8297.9

2 100247.5 13365.9

By considering the maximum completion time for each data

size from TABLE V, the makespan metric is derived as

shown in TABLE VI below.

TABLE VI MAKESPAN

Tasks

Makespan in Seconds Makespan in

Minutes

RALB-

TCA

ACO RALB-

TCA

ACO

10 2353.4 16666.0 39 278

100 8497.8 15360.0 142 256

1000 399820.0 1949095.0 6664 32485

The data provided in TABLE VI, illustrating the makespan in

minutes, is graphically depicted in Figure 4 for data sizes 10,

100, and 1000. The graphs demonstrate the reduction in

makespan achieved by the proposed algorithm across all data

sizes when compared to the referenced algorithm (Guo, 2017).

The improved makespan is an indication of improved CPU

throughput.

DATACENTER

N.A. Suvarna and Deepak Bharadwaj

IJISS Vol.14 No.2 April-June 2024 174

Fig. 4 Makespan

B. Data Transfer Time (Network Latency)

Tasks are defined by an attribute known as "File Size," which

signifies the volume of data to be transmitted during task

execution. Similarly, each virtual machine (VM) is defined

by a parameter known as "Bandwidth," denoting the

maximum achievable data transfer rate between the VM and

other components within the cloud infrastructure, including

storage devices, other VMs, or external networks. By

correlating the file size of a task with the bandwidth of a VM,

the duration required for data transfer to complete the task is

established. This data transfer time is also called

"Communication Overhead" or "Network Latency".

The data transfer time consumed by each virtual machine

(VM) as a consequence of task allocation per the algorithm is

presented in TABLE VII below. The results are listed for

each data size comprising tasks in numbers 10, 100, and 1000.

TABLE VII DATA TRANSFER TIME OF TASKS

Tasks VM

Data Transfer Time in

Seconds

RALB-

TCA

ACO

10 0 16.0 223.0

1 0.5 128.0

2 112.0 32.0

100 0 3186.0 3739.0

1 1245.5 704.8

2 229.1 408.0

1000 0 20059.0 95062016.0

1 9496.0 1753088.0

2 4917.4 2062306.0

Data transfer time denotes the temporal investment essential

for transmitting task execution essential files from the broker

to the virtual machine (VM). In heterogeneous environments,

VMs exhibit disparate bandwidth capacities.

In a heterogeneous environment characterised by virtual

machines with varying bandwidth capacities and tasked with

a diverse set of operations entailing varied data transfer

durations, the VM that concludes data transfer most

expeditiously may encounter a waiting period until all other

VMs complete their respective tasks. This scenario inherently

contributes to network latency, determined by the VM

experiencing the most extended data transfer duration.

Consequently, TABLE VIII is derived from TABLE VII to

delineate network latency.

TABLE VIII DATA TRANSFER TIME (NETWORK LATENCY)

Tasks

DTT in Seconds DTT in Minutes

RALB-

TCA

ACO RALB-

TCA

ACO

10 112 223 2 4

100 3186 3739 53 62

1000 20059 95062016 334 1584366

The data provided in TABLE VIII, illustrating the network

latency in minutes, is graphically depicted in Figure 5 for data

sizes of 10, 100, and 1000. The graphs clearly demonstrate

the improved network latency achieved by the proposed

algorithm across all data sizes compared to the referenced

algorithm (Guo, 2017).

Fig. 5 Network Latency

C. CPU Utilisation

CPU utilisation factor in cloud computing refers to the

measure of the extent to which the central processing unit

(CPU) of a virtual machine or physical server is utilised over

a given period of time. With our proposed methodology, we

aim to propose optimal utilisation of the CPU.

CPU utilisation factor provides insights into the efficiency

and performance of the system. High CPU utilisation

indicates that the CPU operates close to its maximum

capacity, which may lead to performance degradation or

resource contention. On the other hand, low CPU utilisation

suggests that the CPU is underutilised, which may indicate

inefficient resource allocation or provisioning. Our algorithm,

along with prioritising time-critical solutions, also

demonstrates optimal CPU utilisation across VMs.

TABLE IX is the result obtained for CPU utilisation against

the available computing time. Mathematical calculations

involved to arrive at the available computing time are

mentioned below for a sample case.

TABLE IX UTILISATION OF CPU

Task

s

V

M

Computing Time in Seconds

Available Utilised

RALB-TCA ACO

10

1 1642677 315575 17066376

2 6570710 993469 3601002

3 14784097 21688441 2330107

100

1 2252276 8701733 15728753

2 9009103 11527637 7764563

3 20270483 11302492 8038546

1000

1 153788680 409415764 1.996E+09

2 615154722 819744706 33988255

3 1384098124 923881056 123180106

Optimization of System Performance through Ant Colony Optimization: A Novel Task Scheduling and Information Management Strategy

for Time-Critical Applications

175 IJISS Vol.14 No.2 April-June 2024

The computation of available computing time for each

Virtual Machine (VM) is determined through the following

steps:

1. Compute the total length of tasks in Millions of

Instructions (MI).

2. Determine the execution speed of each VM in Millions of

Instructions Per Second (MIPS).

3. Calculate the time required for task completion by

dividing the value obtained in step 1 by the value obtained

in step 2.

4. Determine the Load Share in MIs that each VM can

execute for the duration of time obtained in step 3.

1) Sample Calculation for 100 Tasks

Total task lengths amount to 31,531,862 Million Instructions

(MIs). The computing speed of each Virtual Machine (VM)

is calculated by multiplying the execution speed by the

number of processors.

VM1 has a computing speed of 1,024 MIPS with one

processor.

VM2 has a computing speed of 4,096 MIPS with two

processors.

VM3 has a computing speed of 9,216 MIPS with three

processors.

The total computing speed equals 14,336 MIPS.

The time required for completion is determined by dividing

the total task lengths by the total computing speed, resulting

in 2,199 seconds.

The load share of VM1 is calculated by multiplying its

computing speed (1,024 MIPS) by the time required for

completion (2,199 seconds), yielding 2,252,275.9 MIs.

Now, TABLE X is an extension of the calculations of

Table IX to express the utilisation of computing time as a

percentage of the available power to arrive at a degree of

utilisation.

TABLE X DEGREE OF UTILISATION OF COMPUTING POWER

Tasks VM RALB-

TCA

ACO

10

1 20% 1040%

2 20% 50%

3 150% 20%

100

1 390% 700%

2 130% 90%

3 60% 40%

1000

1 270% 1300%

2 130% 10%

3 70% 10%

The graphical representation of the data of TABLE X,

depicting the degree of computing time used by the CPUs of

virtual machines, is illustrated in the following Figures 6, 7,

and 8.

Fig. 6 Degree of Utilisation of Computing Power for Ten Tasks

Fig. 7 Degree of Utilisation of Computing Power for 100 Tasks

Fig. 8 Degree of Utilisation of Computing Power for 1000 Tasks

In the pursuit of harmonising computational and transmission

loads while concomitantly endeavouring to minimise the

makespan, virtual machines (VMs) do not achieve full

exploitation of their operational capacities. The undesirable

consequence of deviating from optimal utilisation manifests

as an underutilisation of other available VMs. The graphical

representation in Figure 6, Figure 7, and Figure 8 illustrates

that, across diverse data sizes, the curve associated with the

proposed algorithm exhibits a more plateaued profile when

contrasted with the conventional Ant Colony Optimization

(ACO). This characteristic denotes a more equitable

workload distribution among VMs, thereby enhancing the

system's overall efficiency.

20% 20%

150%

1040%

50%

20%
0%

200%

400%

600%

800%

1000%

1200%

1 2 3

%
 C

o
m

p
u

ti
n

g
P

o
w

er

VM

Tasks = 10

RALB-TCA ACO

390%

130%
60%

700%

90%

40%

0%

100%

200%

300%

400%

500%

600%

700%

800%

1 2 3

%
 C

o
m

p
u

ti
n

g
 P

o
w

er

VM

Tasks = 100

RALB-TCA ACO

270%

130% 70%

1300%

10% 10%
0%

200%

400%

600%

800%

1000%

1200%

1400%

1 2 3

%
 C

o
m

p
u

ti
n

g
 P

o
w

er

VM

Tasks = 1000

RALB-TCA ACO

N.A. Suvarna and Deepak Bharadwaj

IJISS Vol.14 No.2 April-June 2024 176

V. DISCUSSION

The experimental findings demonstrated enhancements in the

performance of the RALB-TCA algorithm concerning both

completion time (CPU throughput) and data transfer time

(network latency) associated with the transfer of requisite

files for task execution while maintaining load balance across

virtual machines. The time-critical metrics such as makespan,

CPU utilisation (throughput), and network latency showed

drastic improvements compared to the improvements

referenced to ACO (Guo, 2017). In a cloud setup with virtual

machines having drastic variations in characteristics, the

balance in the loads is essential to lower the amount of

waiting time for the slowest machine to complete its

operation. The plateaued graphs indicate improved balance in

computing time and network latency.

The experiment assigned equal weightage to these parameters.

However, tailoring them to the specific demands of an

application is likely to yield superior outcomes. The

additional computational overhead incurred in pre-execution

heuristic function calculations may be disregarded when

dealing with large datasets, as is commonly encountered in

cloud computing.

Moreover, prioritising tasks based on their length,

particularly by addressing longer tasks first, can lead to a

more balanced distribution of workloads and improved

resource use. This method has the potential to reduce idle

times and enhance throughput.

Incorporating elements like job prioritisation, deadlines, fault

tolerance, and service level agreements (SLAs) can improve

the performance of meta-heuristic algorithms. It can be

integrated with RALB-TCA in real-world applications. These

factors allow for more flexible and adaptive scheduling,

enhancing the algorithm's ability to handle complex and

large-scale cloud computing scenarios.

VI. CONCLUSION

The exposition of the research presented in this document

points out the efficiency of the RALB-TCA algorithm, which

improves different facets of task scheduling for cloud

computing. The new threshold-based algorithm that

introduces a visibility and heuristic function to be modified

by it is discussed in detail. Through our work, we paid

particular attention to some performance metrics—

makespan, data transfer time, load balance and CPU

utilisation.

The modified implementations and algorithmic

improvements have proven adept at efficiently allocating

tasks and minimising communication overhead, significantly

reducing data transfer times. This is particularly

advantageous for applications with large datasets and

intricate task dependencies. Changes in deployment, along

with algorithmic improvements, have proven to enhance task

allocation effectiveness without reducing the time taken to

transfer data. These modified implementations would,

therefore, be more appropriate to use for applications that

deal with large datasets as well as task dependencies due to

their success.

To sum up, we find evidence suggesting that the RALB-TCA

algorithm can drive improved system performance.

Prospective efforts might delve into more tweaks and

practical adoptions of this proposed algorithm within

different cloud computing landscapes, seeking optimal

resource utilisation while meeting user quality requirements

under varied operational conditions.

REFERENCES

[1] Bobir, A.O., Askariy, M., Otabek, Y.Y., Nodir, R.K., Rakhima, A.,

Zukhra, Z.Y., & Sherzod, A.A. (2024). Utilizing Deep Learning and
the Internet of Things to Monitor the Health of Aquatic Ecosystems

to Conserve Biodiversity. Natural and Engineering Sciences, 9(1),

72-83.

[2] Chaharsooghi, S. K., & Kermani, A. H. M. (2008). An effective ant
colony optimization algorithm (ACO) for multi-objective resource

allocation problem (MORAP). Applied mathematics and

computation, 200(1), 167-177.

[3] Chandrashekar, C., Krishnadoss, P., Kedalu Poornachary, V.,
Ananthakrishnan, B., & Rangasamy, K. (2023). HWACOA

scheduler: Hybrid weighted ant colony optimization algorithm for

task scheduling in cloud computing. Applied Sciences, 13(6), 3433.
https://doi.org/10.3390/app13063433.

[4] De Donno, M., Tange, K., & Dragoni, N. (2019). Foundations and

evolution of modern computing paradigms: Cloud, iot, edge, and

fog. IEEE access, 7, 150936-150948.

[5] Eiriemiokhale, K. A., & Olutola, J. B. (2023). Application of the
Internet of Things for quality service delivery in Nigerian university

libraries. Indian Journal of Information Sources and Services,

13(1), 17-25.

[6] Elfarra, B.K., Salha, M.A., Rasheed, R.S., Aldahdooh, J., &
Abusamra, A.A. (2023). Enhancing the Lifetime of WSN Using a

Modified Ant Colony Optimization Algorithm. Journal of Wireless

Mobile Networks, Ubiquitous Computing, and Dependable

Applications, 14(3), 143-155.

[7] García, M., López, N., & Rodríguez, I. (2024). A full process

algebraic representation of Ant Colony Optimization. Information

Sciences, 658, 120025. https://doi.org/10.1016/j.ins.2023.120025.

[8] Guo, Q. (2017). Task scheduling based on ant colony optimization

in cloud environment. In AIP conference proceedings, 1834(1).

[9] Junyu, Y., & Lichen, Z. (2018). The Load Balanced Ant Colony

Optimization based on Cloud Computing. International Conference

on Network, Communication, Computer Engineering (NCCE),

ATLANTIS PRESS.

[10] Lin, M., Xi, J., Bai, W., & Wu, J. (2019). Ant colony algorithm for

multi-objective optimization of container-based microservice

scheduling in cloud. IEEE access, 7, 83088-83100.

[11] Liu, L., Luo, T., & Du, Y. (2019). A new task scheduling strategy

based on improved ant colony algorithm in IaaS layer. In 2019

International Conference on Computer, Information and

Telecommunication Systems (CITS), 1-5.

[12] Moon, Y., Yu, H., Gil, J. M., & Lim, J. (2017). A slave ants based

ant colony optimization algorithm for task scheduling in cloud

computing environments. Human-centric Computing and

Information Sciences, 7, 1-10.

[13] Okrah, S. K., Wiah, E. N., Otoo, H., & Addor, J. A. (2024). A

velocity-based ACO algorithm for optimizing routes and social

cost. Scientific African, 23, e02031.

https://doi.org/10.1016/j.sciaf.2023.e02031

[14] Santhosh, G., & Prasad, K. V. (2023). Energy Saving Scheme for
Compressed Data Sensing Towards Improving Network Lifetime

for Cluster based WSN. Journal of Internet Services and

Information Security, 13(1), 64-77.

https://doi.org/10.3390/app13063433

Optimization of System Performance through Ant Colony Optimization: A Novel Task Scheduling and Information Management Strategy

for Time-Critical Applications

177 IJISS Vol.14 No.2 April-June 2024

[15] Scianna, M. (2024). The AddACO: A bio-inspired modified version

of the ant colony optimization algorithm to solve travel salesman

problems. Mathematics and Computers in Simulation, 218,

357-382.

[16] Selvan, T. V., Chitra, P., & Venkatesh, P. (2009). Parallel
implementation of task scheduling using ant colony

optimization. International Journal of Recent Trends in

Engineering, 1(1), 339-343.

[17] Sharma, N., & Garg, P. (2022). Ant colony based optimization
model for QoS-Based task scheduling in cloud computing

environment. Measurement: Sensors, 24, 100531.

https://doi.org/10.1016/j.measen.2022.100531.

[18] Tawfeek, M. A., El-Sisi, A., Keshk, A. E., & Torkey, F. A. (2013).

Cloud task scheduling based on ant colony optimization. In 8th

International Conference on Computer Engineering & Systems

(ICCES), 64-69.

[19] Xu, G., Lin, H., Cheng, Y., & Li, S. (2023). An Improved Ant
Colony Optimization for Solving Task Scheduling Problem in

Radar Signal Processing System. Journal of Signal Processing

Systems, 95(2), 333-350.

[20] Zuo, L., Shu, L., Dong, S., Zhu, C., & Hara, T. (2015). A
multi-objective optimization scheduling method based on the ant

colony algorithm in cloud computing. IEEE Access, 3, 2687-2699.

