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Abstract - The rapid proliferation of Massive Open Online
Courses (MOQCs) offers particular difficulties in providing
timely and high-quality personalized feedbacks associated with
customer interactions at scale. This research examines the gap
which Large Language Models (LLMs) address with focus on
automation in providing timely feedback and the scalability
efficiencies of LLMs in the feedback scope provided in MOOC
settings. Adopting a results-oriented experimental approach to
feedback systems, LLMs like GPT-3.5 and GPT-4 are
implemented across varying course contexts and learning
groups. Their outputs are benchmarked against traditional
systems through semantic similarity calculations, response time
measurement, cost evaluation, and learner satisfaction metrics.
LLMs’ ability to comply with instructor feedback while
improving responsiveness and personalization outpaced
traditional methods in every context analyzed, with satisfaction
scores outperforming pre-set benchmarks across the board.
Learners reported appreciation towards Al responses, citing
enhanced understanding and interaction, overshadowed by
defendable claims of bias, genericity, and flawed constituent
pressure. All in all, the study provides concrete guidance
illustrating the ways in which LLMs reconfigure pedagogical
feedback mechanisms alongside MOOCSs, shaping subsequent
shifts in the design and integration strategies utilized in e-
learning frameworks across the world.
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l. INTRODUCTION

1.1 Background and Motivation

The advent of Massive Open Online Courses (MOOCsS) has
changed the educational paradigm by providing scalable and
affordable education to people around the world (Zhu et al.,
2020). They have grown exponentially over the past decade.
Thanks to the availability of mobile devices and broadband
internet, students from every corner of the globe can now
access university level courses without financial or
geographic constraints (Alraimi et al., 2015). While the broad
availability of knowledge is a tremendous leap forward, it
poses a significant challenge in maintaining quality in the
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form of timely and personalized responses in feedback for
millions of learners at the same time (Khalil & Ebner, 2014).

Feedback plays an important role in the learning process. It
informs learners, helps to reinforce proficient understanding,
and identifies problem areas. However, in the case where
MOOCs scale up to enrol thousands, and in some cases
millions of learners, conventional feedback approaches
become unmanageable. Instructor provided feedback, despite
the valid pedagogic rationale, does not scale. Teaching
assistants step in to help, but even their participation cannot
sustain the pace of growth in course enrolment (Moore &
Blackmon, 2022).

This feedback bottleneck has been traced in Figure 1, which
plots the illustrative increase in MOOC enrolment and
feedback metrics from 2015 to 2024. Enrolment numbers
grew from 20 million in 2015 to over 250 million in 2024, an
increase of more than tenfold. On the other hand, feedback
metrics—that is, all scenarios in which a learner expected or
received an interaction—grew from 5 million to 130 million.
This trajectory of growth captures the fundamental problem
of institutional inertia in the face of exponentially growing
learner demand.

Fig. 1 Growth in Enrolment and Feedback Volume in MOOCs (2015—
2024)

In addressing this, the platforms have tested diverse methods,
including peer review processes, teaching assistants, and
automated scoring through natural language processing
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(NLP) based on explicit rules. All solutions present unique
challenges. Feedback provided by peers is easy to scale and
difficult to control. Instructors give useful feedback but
cannot provide it to every learner. Automated systems operate
quickly, but their feedback is often devoid of detail and
subtlety.

The invention of Advanced Natural Language Processing
Features, especially the development of Large Language
Models (LLMs) such as GPT-3.5 and GPT-4, has provided
new opportunities (Silva et al., 2025; Prasath, 2023). These
models are capable of context comprehension alongside
submission parsing, combining to produce hyper-
personalized feedback akin to human text (Rahman &
Watanobe, 2023; Casimira & Francis, 2025). Unlike the
earlier LLMs which utilized rule-based logic systems,
modern LLMs rely on deep learning and transformer-based
architecture, making their outputs and responses adaptable,
contextually appropriate, and educationally reciprocal. Thus,
LLMs would be beneficial for educational settings which
prioritize scalability and personalization.

1.2 Problem Statement

As MOOC:s evolve, the issue of feedback remains complex
and enduring. Learners still report dissatisfaction regarding
the feedback’s timeliness, clarity, and relevance—even after
multiple cycles of adaptive feedback systems (Kizilcec et al.,
2017). This gap, in addition to being a hurdle in learning,
fosters increased dropout rates, diminished motivation, and
accelerated learner disengagement.

Currently, feedback in MOOC:s is primarily offered through
three channels: peer assessments, instructor feedback, and
comments generated by obsolete Al systems (Fauvel et al.,
2018). The diagram depicted in Figure 2 illustrates the
approximate distribution of different feedback types across
major MOOC platforms. Feedback provided through peers
makes up 40% of posts, with instructors and assistants
making up the responding 35%, and Al-based systems
providing 25%.

Meer Fepdback

Fig. 2 Distribution of Feedback Types in MOOC Platforms
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In their own ways, every approach has issues. Peer feedback,
for example, while democratically scalable, suffers from a
lack of consistency and tends to be devoid of pedagogical
merit. Instructor feedback is consistent and valuable, but it is
not scalable to large cohorts of learners (Zawacki-Richter et
al., 2019). Al feedback—a product of earlier NLP approaches
to Al—follows inflexible guidelines and is devoid of
personalization based on context, history, or previous
interactions with the learner, making it highly contextual and
personalized.

Summarized in Table 1 are these limitations as well as their
consequences. The feedback framework is limited in its
coverable scalability, consistency and delay quality, lack
personalization, and high operational requirements—
systemic problems of MOOC systems. Overcoming these
challenge requires a shift in the entire paradigm, not mere
enhancements.

TABLE | SUMMARY OF CHALLENGES IN CURRENT MOOC

FEEDBACK SYSTEMS
Challenge Description
Scalability of Instructor | Instructors cannot scale with
Feedback rising enrollment volumes
Inconsistency in  Peer | Peer reviews vary significantly in
Review Quality quality and depth

Delayed Feedback Delivery | Feedback is often provided days
or weeks after submission
Feedback is typically generic and
not tailored to learner context
High Operational Costs for | Institutions incur high costs hiring
Manual Evaluation teaching assistants or evaluators
With the gaps highlighted in the preceding context, the
present study explores the extent to which Large Language
Models can fill this void by providing personalized, real-time,
and pedagogically valuable feedback at the scale required by

modern MOOC:s.

Lack of Personalization

1.3 Objectives of the Study

This study focuses on evaluating the capabilities of LLMs
regarding automation and its efficiency within the MOOC
paradigm as an ecosystem. It evaluates the semantic and
instructional aspects of feedback offered by LLMs relative to
instructor feedback and those produced by earlier versions of
NLP systems (Liu et al., 2024). It is important to assess
whether LLMs are able to provide human-level feedback, and
if not, whether they at least do better than traditional
automated systems in terms of usefulness, clarity, and
contextual relevance.

Another one of the objectives is to evaluate operational
efficiency—especially LLMs and automated reasoning tools
in relation to latency, cost, and stability during concurrent
load (Jiang et al., 2024). MOOCs have to cater to a global
audience in different time zones and with varying levels of
technological readiness. So, the ability of the model to scale
with demand while sustaining the same level of quality
becomes crucial (Ibrahim, 2020; Anandhi et al., 2024).
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The study also investigates learner perception, which is rarely
given attention with regards to its technical aspects. When it
comes to feedback, it is not only about getting the right
information, but also the information’s tone, motivational
value, and overall value as perceived by the learner. Analysis
of learner responses to Al feedback will be conducted through
post session surveys, rating instruments, and open-ended
qualitative comments (Basri, 2024).

Ultimately, this research tries to develop a roadmap for
incorporating LLMs into current MOOC systems. It
examines system deployment architectural, pedagogical, and
ethical concerns simultaneously. This encompasses
assignment type versatility, multi-language environment
scalability, and algorithmic bias mitigation.

1.4 Contribution and Scope

This document enhances Al-assisted education discourse
with one of the earliest comprehensive, data-backed analyses
of LLMs concerning feedback provision in MOOCs. Also,
this study is unique because it neither focuses solely on
pedagogical constructs nor on technical NLP evaluation
frameworks, but rather integrates the two. It assesses the
feasibility and pedagogical soundness alongside the precision
of LLM feedback within large-scale teaching settings.

The association of multiple MOOC ecosystems, academic
disciplines, and diverse learners defines the scope of this
research. It incorporates STEM, business, and humanities
courses to test the model’s generalizability. Feedback types
assessed include short-answer normed correction grading,
essay and concept explanation grading, and more.

A results-oriented approach is fundamental to the study. It
makes use of quantitative measures like BLEU and ROUGE
for semantic evaluation, latency logs for processing speed,
and cost evaluation predicated on token usage of different
model types, for instance, GPT-3.5 and GPT-4. Moreover,
human rating of quality and satisfaction is incorporated to
gauge the subjective assessment from all users, learners, and
educators professionally.

In addressing the technological, pedagogical, and operational
elements of automated feedback, the work is both a
benchmark and a pathfinder. It helps target the needs of
MOOC providers, educational technologists, instructional
designers, stakeholders, and policy shapers. It also invites
further exploration of adaptive feedback mechanisms, real-
time action enablement in learning, and socially responsible
artificial intelligence in teaching and learning technologies.

1. METHODOLOGICAL FRAMEWORK

2.1 Overview of Large Language Models (LLMs) in
Educational Context

Large Language Models (LLMs) such as GPT-3.5 and GPT-
4 offer capabilities that can fundamentally change the way
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communication, creativity, and problem-solving are
approached. In the education sector, their potential is even
more striking. They can provide contextually relevant
detailed feedback, perform at-level text and speech
generation, proficiently execute instructional dialogues, and
customize interactions with learners at the input level
(Kasneci et al., 2023). Thus, LLMs have the prospects of
fostering the personalization and scalability of education,
particularly in the massive open online courses (MOOCs)
context.

Unlike previous natural language processing systems that
depended on domain templates or rigid rules, LLMs utilize
extensive text corpora to train, which facilitates
generalization across numerous topics and formats. The
transformer's architecture is able to model longer
dependencies, resulting in the generation of fluent,
syntactically, and richly semantically outputs (Wei & Lau,
2023). For educational purposes, this architecture aids in the
analysis of learner submissions, which may include essays,
code excerpts, or explanatory reasoning, and provides
coherent pedagogically aligned feedback (Stamper et al.,
2024).

The possibilities of generating educational feedback using
LLMs relies on their capacity to provide multi-layered
evaluations. They are capable of restructuring arguments,
discerning subtle nuances, conceptually misinterpret, and
even adopt Socratic personas (Blasco & Charisi, 2024). Their
potential in this area makes them ideal for MOOCs, where the
breadth and magnitude of learner submissions far outstrips
instructor feedback resource availability.

2.2 Experimental LLM-Based Feedback
Evaluation

Design  for

To assess MOOSE’s feedback delivery effectiveness using
LLMs, an experiment was conducted with a result-focused
approach. The experiment's subjects were drawn from several
online courses offered across several core areas, including
computer science, business, humanities, and data science.
These courses included formative and summative
assessments of various types that typically demanded written
answers in the form of short answer essays or more complex
open-ended problems (Dempere et al., 2023).

The study deployed several distinct LLMs, including variants
of GPT-3.5 and GPT-4, establishing them within a feedback
loop in an existing MOOC scaffolding platform. Learner
submissions were processed in real time or in batches subject
to platform limitations, with feedback generation occurring
simultaneously or sequentially (Jia et al., 2024). For most
platforms, verifiable textual feedback was captured, with
structured comment data being catalogued alongside
commentary contributed by instructors and peers over time,
enabling non-temporal comparisons.

The assessment structure resulted in design focusing on
multiple LLMs to each provide a single feedback item, thus
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providing mechanisms capturing several performance aspects
which include semantic correctness, contextual relevance,
generation delay, token utilization, and learner expectation.
Feedback in this case was distinct for type as cursive for
template-like, brief, and minimally adjusted input versus
contextualized, learner-specific, and  detailed for
personalized. Figure 3 illustrates difference in token
expenditure between generic and personalized feedback.
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Fig. 3 Token Utilization per Feedback Type (Generic vs Personalized)

As the results show, there is a considerable increase in token
usage for personalized feedback across all content types. For
instance, the tokens needed for personalized essay feedback
were almost twice as much as those needed for generic
feedback. This demonstrates the trade-off between the
feedback provided and the computational resources
consumed, which is very important in large-scale scenarios.

Aside from token consumption, the semantic overlap of
LLM-generated feedback texts and instructor-supplied
feedback texts was evaluated with vector space similarity
measures as well as manual reviews. Figure 4 shows that
heatmap evaluation revealed largely overlapping semantic
regions across most topics, most notably in more technical
fields such as algorithms and machine learning, where LLMs
strongly aligned with the expert feedback provided.
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Fig. 4 Semantic Overlap of LLM-Generated Feedback vs Instructor
Feedback

With respect to instructional tone, depth, and specificity of
human-generated feedback, GPT-4 consistently
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outperformed other models, especially in the more abstract or
higher-order cognitive work like ethics or data analysis. This
demonstrates the capacity of modern LLMs not merely to
reproduce instructor output, but to augment it, and therefore
scale it.

2.3 Dataset Description and Preprocessing Techniques

As it pertains to the feedback engine's testing and training, a
hybrid educational dataset, both proprictary and publicly
available, was employed. The corpus is made up of:

MOOC QA Banks from open repositories such as
OpenEd and Coursera.

Human-Al dialogue transcripts designed specifically
for teaching and learning environments.

Learner submission and instructor feedback pair
archives from old online courses.

Domain expert validated synthetic question-answer
pairs.

A great deal of preprocessing was done before using these
datasets in any of the models. Every piece of text was
meticulously normalized and tokenized to the most basic
units of words. Cleansing processes included stripping away
irrelevant, non-contributory metadata, system-generated log
files, misspellings, profanity, spelling errors, nonstandard
formatting, logographic texts, offensive content, and overly
abbreviated texts (Omar et al., 2022). Ethical scrub was done
by anonymizing identifiable information pertaining to the
learners so as not to breach ethical compliance standards.

In preparation for fine-tuning, feedback sample sets were pre-
structured by pedagogical intent and assignment type (error
correction, encouragement, rubric-based evaluation) so as to
aid in organizational clarity. Each sample comprised a learner
submission and contextual cues, including the course title,
topic, and a question prompt alongside feedback which was
provided by an instructor, a peer, or a legacy feedback system
(Algahtani, 2024).

After preprocessing was completed, the dataset was divided
into the training (70%), validation (15%), and test (15%) sets.
Balanced stratified sampling was utilized to maintain equal
representation across both the subject area and feedback type.
In order to maintain evaluative rigor, the test set was
completely isolated from the models during the training and
fine-tuning stages.

2.4 LLM Configuration, Fine-Tuning, and Deployment
Parameters

This study implemented four LLMs: two experimental
models (LLM1 and LLM?2) and two production-scale models
(GPT-3.5 and GPT-4). The models differed in architecture,
token limits, training scale, and fine-tuning strategies as
outlined in Table 2.
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TABLE Il MODEL ARCHITECTURE, TOKEN LIMIT, TRAINING SET
SIZE, AND FINE-TUNING PARAMETERS

Model | Architecture | Token Training | Fine-tuning
Limit Set Size Dataset

LLM1 | Decoder 2048 40B MOOC QA
Transformer tokens Bank

LLM2 | Decoder 4096 80B Human-AI
Transformer tokens Dialogues

GPT- | GPT-3.5- 8192 300B Educational

3.5 turbo tokens Prompts

GPT- | GPT4 128000 | 1T+ MOOC +

4 tokens Instructor

Feedback Set

All models were executed via Python-based API and
controlled through a feedback submission module that
formed part of the MOOC platform’s backend. Fine-tuning
was performed incorporating supervised learning with
respond labels assigned to feedback targets. Prompt
engineering fostered the desired outcomes while ensuring
adherence in structure, clarity, and tone, and overall
consistency.

Efforts focused on the mitigation of hallucinations,
grounding, and biased language in the generated responses
while protecting identity language. Ensuring model
compliance with academic rigor, inclusivity, and respectful
language policies was directed through prompt restrictions
and system messages.

Deployment utilized Docker for container-based scaling and
serverless functions for dynamic load balancing. For
performance optimization, interactions were continuously
monitored for latency, throughput, and token consumption.

1. EXPERIMENTAL SETUP

3.1 Platform Integration and Feedback Delivery Mechanism

Incorporating large language models (LLMs) into a MOOC
environment poses numerous design and implementation
problems. This research effort was developed on a MOOC
system with Al capabilities that offers both live and recorded
classes. The platform featured modular architecture with an
API-based feedback component that interfaced with existing
workflows for course completion and delivery. This
architecture enabled feedback to integrate effectively with
assignment submission systems, learner engagement
interfaces, and instructor feedback systems.

Learner submissions activated a backend workflow that sent
the text to one of the three feedback generation methods: a
legacy rule-based NLP, GPT-3.5, and GPT-4. Evaluation
fairness was maintained by randomly allocating these engines
to content and test group, provided that the model-agnostic
assignment prompt was applied universally.

The feedback engine delivered responses that were
automatically processed and recorded into the platform's
LMS system, with very little latency between submission and
learner view update. Custom loggers monitored the feedback

Online Courses

content along with its generation time, token expenditure, and
relevant downstream actions by learners, such as clicks,
ratings, and responses to the feedback. Instructors could
analyse and edit Al-generated feedback as they deemed fit
during the pilot testing phases.

In order to maintain pedagogical integrity, each instance of
feedback was encoded with a structure indicating the specific
feedback category (for example, explanation/clarification of
the concept, evaluation, and feedback against rubrics) as well
as the model type that generated the feedback. This provided
a means for conducting comparative analysis while
maintaining transparency and traceability across the lines of
artificial intelligence model responses in feedback provision.

3.2 Learner Grouping and Control Conditions

The study incorporated an overall sample of 2000+ learners
from five distinct subject areas, which include information
technology, ethics, marketing, data science, and academic
writing. Each subject cohort was sampled from freely
accessible enrolment MOOCSs hosted on a leading ed-tech
platform. Participants were assigned into experimental arms
using random allocation with stratification based on
demographic variables, prior coursework, and engagement
levels with the course content.

There were three primary experimental groups:

e Control group: Traditional NLP feedback provided.

e Experimental group 1: Feedback generated by GPT-3.5
provided.

e Experimental group 2: Feedback generated by GPT-4
provided.

Every cohort worked with identical tasks and learning
materials, thus the only difference across conditions was how
the feedback was delivered. This control of the feedback
discriminant allowed for an unambiguous evaluation of the
performance results. Learners’ exposure to various feedback
methods remained uniform throughout the two-week testing
period, during which all tasks were submitted and considered.

Teaching faculty were made aware of the feedback produced
with Al tools but were requested not to engage unless there
were clear ethical or factual problems. Participants were
invited to evaluate the feedback given to them after every
assignment through a 5-point Likert scale alongside optional
comments, enriching the assessment with qualitative data.

3.3 Performance Metrics and Evaluation Criteria

The feedback models were assessed using a framework that
combined semantic, operational and behavioural analysis.
This included the models’ performance for the following
metrics:
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1. Feedback Latency — Defined as the time an educator
takes to submit their work and receive feedback. Low
latency equates to a more favourable user experience.

2. Feedback Cost - The monetary and computational cost
associated in the generation of feedback which includes
API token use and infrastructural costs.

3. Semantic Quality — Documented through cited language
evaluation methods, BLEU and ROUGE scores along
with instructor estimates in judging the quality of the
overall feedback regarding its tone, relevance and
accuracy.

4. Learner Satisfaction — Determined from the post survey
ratings and assessment of behavioural metrics such as
time spent on feedback, action taken on suggested
changes, resubmissions, and overall feedback cycle.

5. Instructor Correction Rate — A proxy measurement of
accuracy derived from the frequency of instructors
revising or rejecting the Al-assessed feedback.

6. Feedback Engagement — Detected through the use of
interaction data made up of clicks, hovers, and
engagement time with explanations and resources
linked within the feedback.

In figure 5, we see a comparison of average feedback latency
across all rounds of feedback. According to the data
presented, GPT-4 was and continues to be faster than both
GPT-3.5 and traditional NLP systems by approximately 1.8
seconds of average latency. Following closely was GPT-3.5
at roughly 2.2 seconds while traditional NLP systems were
the slowest, coming in at 3.5 seconds per feedback response.

Fig. 5 Average Feedback Latency (GPT-3.5 vs GPT-4 vs Traditional NLP)

As demonstrated, these figures reveal the responsiveness of
the LLMs in real-time, particularly with efficient caching and
pre-processing. The benefits of lower latency are self-evident
but greatly enhanced in the context of learning and self-paced
environments requiring immediate feedback.

3.4 Feedback Latency and Cost Tracking

There is no denying the added responsiveness, but these
benefits come at a price due to the tokenized structure and the
infrastructure burden. For each model type, the average cost
of feedback was calculated per learner, considering inference
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and server costs. As traditional NLP systems take the lead
with the lowest operating cost of $0.01 per student, followed
by GPT-3.5 at $0.07, and GPT-4 systems last at an operating
cost of $0.12.

® 0.06}
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Fig. 6 Feedback Generation Cost per Student vs Model Type

While instructional support provided through GPT-4 is more
costly on a per-student basis, the quality and satisfaction
improvements noted in earlier sections often make the cost
worthwhile. Nonetheless, budget-strained platforms will find
GPT-3.5 more appealing because it strikes a good balance
between cost and effectiveness.

Cumulatively, server activity, model output, and scalability
with regard to peak demand were analysed simultaneously.
GPT-4 also needed additional memory resources and was less
flexible with concurrent load increase surges. In contrast,
GPT-3.5 sustained stable latency with varying numbers of
users. These operational aspects are important for all
institutions considering large LLM implementations as they
focus on peak demand periods like exams or assignment
deadlines.

This table is taken from the description of experimental
cohorts and course subjects along with metrics pertaining to
the volume of feedback for evaluation outlined in Table 3.

TABLE Il EXPERIMENTAL COHORTS, COURSE SUBJECTS, AND
FEEDBACK VOLUME STATISTICS

Cohort | Subject No. of | Total Delivery
ID Area Learners Feedback Mode
Instances

C101 Computer 500 2500 Live +
Science Async

C102 Ethics 300 1200 Async

C103 Marketing 400 1800 Live

C104 Data 450 2200 Async
Science

C105 Writing 350 1500 Live +

Async

In this case, the feedback load per cohort was tracked over
multiple submissions and feedback rounds to capture the
submission and GPT-feedback cycles. This tells us diverse
instructional and scholarly contexts, the models performed
reliably.
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1IV. RESULTS AND ANALYSIS

4.1 Accuracy and Semantic Quality of Feedback

The main goals of the current research were measuring the
accuracy of LLMs compared to traditional NLP systems and
instructor mechanisms, as well as determining how well
semantically feedback was aligned with the text by LLMs and
NLP systems. To achieve this goal, combination of automated
natural language evaluation metrics BLEU and ROUGE-L
alongside expert judgments from various academic fields was
performed.

The gap between instructor responses and LLM-generated
feedback was thoroughly filled semantically with humans
written feedback where LMs algorithms received L
instructors expressed support for the L LM feedback aligned
sentiment by noting provided comments. An ensemble of
instructors was presented with algorithms data science
marketing writing topics and ethics generating a heatmap
illustrated post description in.

44
45
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a3
142
4l 4.0
41
44

Algorithms Ethics Data Sclence  Marketing Wiiting
Topic

Manusl Feedback

Feedback Type

LM Feedback

Fig. 7 Topic-Wise Feedback Quality Rating (Manual vs LLM)

In contexts like the data driven and logical ones, GPT-4 was
found to perform at par or even surpassing the manual
feedback attrition. The feedback ascertained expressed a
critique where the LLM fell behind in meaning making and
reflective engagement in think pieces like Ethics and
Marketing dissertations but was deemed robust overall.

Table 4 captures the results of BLEU and ROUGE-L analyses
alongside the average human evaluation scores in the context
of qualitative analysis. It was revealed that GPT-4 achieved a
BLEU score of 0.81 and a ROUGE-L score of 0.84,
significantly outperforming GPT-3.5 and other NLP
models—both GPT-3.5 and conventional NLP models were
outperformed by GPT-3.5. Human evaluators in the study
rated GPT-4’s feedback an average of 4.6, which showcased
its technical adequacy alongside perceived helpfulness.

Online Courses

TABLE IV EVALUATION SUMMARY: BLEU, ROUGE, AND
HUMAN RATINGS ACROSS MODELS

Model BLEU ROUGE- | Average Human
Score L Rating (out of 5)

Traditional 0.58 0.61 3.7

NLP

GPT-3.5 0.72 0.75 4.2

GPT-4 0.81 0.84 4.6

These conclusions validate the hypothesis that recent LLMs
are capable of generating contextually relevant and
semantically rich feedback that approaches the level of expert
instruction, which affirms their use in advanced learning
systems with complex frameworks.

4.2 Learner Satisfaction and Usefulness Perception

B

Moving beyond the semantic dimension, the learners
endorsement of feedback is vital for its uptake and
educational influence. To determine this, all learners
participating in the experiment were requested to evaluate the
feedback they received and subsequently provide a
justification for what they found most valuable.

Feedback was classified into four major categories: resource
suggestion, concept clarification, error highlighting, and
encouraging praise. As presented in Figure 8, learners
identified the combination of concept clarification and error
highlighting as the most beneficial for feedback with
frequencies of 35% and 30% respectively. While the
suggestions and encouragement were helpful, they were
viewed as secondary.

gestod Musaur es

Contapt Clarihator

Fig. 8 Learner Perceived Usefulness of Feedback Categories

Qualitative feedback captured on the trend analysis
demonstrated the integration of Al into instructional practice.
Many learners expressed satisfaction with the accuracy and
tone of GPT-4 feedback, stating that it “seemed like a real
tutor was giving recommendations.” Some pointed out
targeted misconceptions and corrective strategies as equally
helpful. Notably, a significant amount of learners indicated a
preference for LLM feedback to feedback given by peers,
citing greater consistency and less ambiguity as dominant
reasons.
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Survey results also showed learners with GPT-4 feedback
were more likely to revisit and edit assignments, suggesting
the availability of quality feedback has a greater incentive
impact that motivates the learner to engage more deeply with
the instructional content.

4.3 Instructor Validation Scores and Correction Rates

Instructor validation of LLM feedback accuracy required
educators to assess a random sample of responses for
accuracy suggesting a LLM attributed feedback comment
was correct, hence requiring no changes. Correction rate was
adopted as a proxy score for the presence of logical or
educational error(s). Figure 9 shows the distribution of
corrections across all model outputs for each feedback type.

) SRR SN SISO TS SERTEEET

YOIt Anywer Lssay Code Review

Fig. 9 Instructor Corrections Required per Feedback Type

Not surprisingly, conventional NLP technologies had the
highest correction rates, especially with longer-form
responses like essays. With GPT-3.5, I had to intervene
moderately, mostly for tone and completeness. GPT-4
required the least corrections, most of the flagged concern
issues  being  overgeneralization and task-specific
terminology gaps in more generalized domains.

These results imply that while LLMs do not supplant the need
for validation from domain experts—especially in sensitive
and highly specialized matters—they do lessen the burden
placed on instructors. Furthermore, instructors reported that
checking the feedback generated by LLMs was faster than
checking peers’ responses or checking the original feedback,
which reiterates the efficiency gain.

4.4 Model Scalability under Concurrent Load

An essential consideration when assessing the pragmatic
application of LLMs in MOOCs is the ability to scale
effectively with concurrent users. As moderation feedback
models serve thousands of learners engaging with course
materials at the same time, they face the limits of high latency,
consistent output, and low system strain.

The performance of models during peak load times was
assessed with the aid of real-time server logs and cloud
monitoring systems. The feedback node's concurrent user
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count increased to 100 with each user’s input being processed
as a separate feedback node, and with barely any increase in
processing delays, GPT-3.5's performance remained stable.
Moreover, GPT-4, who is known to be more resource-heavy,
still responded under 2 seconds with 60 concurrent users.

The efficiency of traditional NLP systems came at the cost of
contextual inconsistency, often needing multiple backend
calls for template piecing to be coherent. These systems were
cost-efficient but lacked personalization and adaptability. As
for GPT-4, the decrease in its feedback throughput was
compensated for by the increase provided through accuracy
and revision rate. These findings allow greater flexibility in
adopting a hybrid strategy.

These findings pave the way for a hybrid adoption strategy in
large-scale educational systems. With these conclusions, it is
suggested that GPT-3.5 is used as the primary default engine
for general coursework, with only advanced learners
requiring nuanced feedback being serviced by GPT-4
reserved for high-stakes assignments. This enables setting
performance targets alongside cost control while maintaining
quality across a wide control span.

V. DiscuUssION

5.1 Interpretation of Observed Improvements

The findings from this investigation strongly suggest that the
integration of Advanced  Generative  Pre-trained
Transformers, particularly versions 3.5 and 4, into the
feedback architecture of MOOCs (Massive Open Online
Courses) enhances the quality, speed, and scalability of
feedback automation. All the improvements were consistent
across different domains and types of feedback, both
subjectively (learner and instructor ratings) and objectively
measured (BLEU, ROUGE).

Feedback produced by LLMs (Large Language Models)
aligned with the instructional goals and intent, as well as the
semantics of human feedback at no lesser than average
overlap scores and high human evaluation grades.
Remarkably, GPT-4 outperformed earlier legacy systems by
responding in-context to learners’ submissions far more than
older NLP systems, demonstrating extensive contextual
relevant response capabilities tailored to learners'
submissions. This is remarkable in sophisticated and abstract
tasks such as essays and ethical analyses, which refrain
traditional automated kinds of systems from executing the
intricacies of arguments and interpretations.

Instructors experienced a reduction in the need to revise and
adjust feedback manually, which further suggests automation
within pedagogy is working towards integrating seamlessly.
The findings suggest not only operational improvements but
also a more profound automation of pedagogical processes,
enabling human educators to shift their focus from repetitive
evaluations to strategic engagement and mentorship of
learners.
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From the learners' perspective, Al-provided feedback was
well-received, with a considerable number expressing that the
guidance and rationale provided were articulated and framed
in a manner that was constructive and encouraging. This
change in perception by learners reinforces the argument that
LLMs serve a purpose beyond being technological
instruments; they have the potential to transform learning
processes and impact results profoundly.

5.2 Role of LLMs in Enhancing Personalization at Scale

This study demonstrated one of the most significant advances
offered by LLMs, which is the ability to provide personalized
feedback to each individual learner, something that has never
been possible within the MOOC framework. In comparison,
traditional automated systems are governed by rules and
templates, which leads them to treat all learners in a
standardized way with little to no variation. LLMs, on the
other hand, respond to learner submissions, writing style, and
even assumed proficiency level, making them far more
responsive.

The model’s tailored feedback capabilities were evident in its
varied output. As case in point, the same question was
answered differently depending on whether the learner
revealed a partial understanding, confusion, or strong
understanding. Instructors noted that this type of responsive
variation seemed to emulate formative feedback provided in
one-on-one tutorial sessions, except this time, it was provided
en masse by a machine.

In addition, personalization went beyond content to include
tone and pacing. The models were able to alter their feedback
presentation to match the learner’s level of formality. In some
instances, they even provided contextually-appropriate
suggestions that aligned with learners' interests. These
adaptive capabilities are defining characteristics of why
LLMs are so useful in contemporary e-learning settings.

Equally important is providing personalized experiences to
all users regardless of their background. As illustrated in
Figure 10, the system achieved fairness in distributed
personalized feedback across different learner demographics.
Measures of feedback equity and satisfaction remained
consistently high among learners from the Global South,
older adults, and non-English speaking participants—groups
traditionally overlooked by automation systems.

Online Courses
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Fig. 10 Feedback Equity Across Learner Demographics (Region,
Language, Age)

These outcomes corroborate not only the effectiveness of
personalization but also the model’s ability to promote
inclusiveness and accessibility. When responsibly managed,
LLMs have the potential to provide equitable feedback by
ensuring that learners, irrespective of their geography,
language, or age, receive high-quality, tailored responses
crafted for their individual learning pathways.

5.3 Challenges in Integration with MOOC Platforms

Regardless of the encouraging outcomes, the incorporation of
LLMs into current MOOC frameworks presents several
concerns. One major issue stands out—computational cost.
As discussed previously, large-scale GPT-4 implementation
faces particularly harsh institutional funding constraints due
to the token-based pricing paradigm. Although GPT-3.5
offers a more affordable option, it also demands substantial
cloud resources, especially in real-time or high-concurrency
environments.

Another challenge in implementation is the compatibility of
content. Not every type of assignment lends itself to Al
evaluation. For example, tasks that require highly subjective
self-contextualization, effective storytelling, and ethics
deliberation in given context discussive frameworks may be
too advanced even for highly sophisticated LLMs. Along
with this, as much as models can cope with multilingualism,
the sinking incisiveness of fluency in lower-resourced
languages hampers freely global deployment.

Infrastructure challenges also appear with simultaneous
active users. Feedback efficiency gain in relation to the
concurrent users is shown in Figure 11. The curve indicates
that efficiency gain initially grows proportionally to scale.
However, a point is eventually reached when infrastructural
constraints, throttling of APIs, and sudden increases in
latency would start lowering returns.
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Fig. 11 Feedback Efficiency Gain vs Number of Concurrent Users

As shown, this pattern demonstrates the deliberate
architectural need sought after. Institutions need to
accommodate not only the average load but also the peak
usage during exam periods and deadlines for assignments.
Risk mitigation strategies like feedback queueing, hybrid
cloud implementation, and model caching can address the
problem but require additional resources for refinement and
sustained help.

A last issue addresses the governance of cross platform
integration concerning hierarchical feedback. Because
feedback is sensitive to educational guidelines, institutions
must create clear review, audit, and edit protocols pertaining
to content LLMs produce. In the absence of an instructor- Al
feedback loop, there is a potential danger of pedagogical
drift—erosion of instructional quality over time.

5.4 Socio-technical Considerations and Bias Risks

Integrating LLMs in education brings forth socio-technical
risks and ethical considerations that need special attention.
LLMs are created using enormous datasets that are generally
not curated, containing structural biases, inequities, and
prevailing societal norms. Without implementation of active
bias mitigation techniques, these datasets reproduce or
reinforce biases.

Some LLM-assigned roles or conversational contexts were
identified during the experiment in which learners' cultural or
intention-related contextualized scaffolds were incorrectly
identified. Some pieces of feedback subtly endorsed western-
centric academic norms alienating learners from non-western
indigenous traditions regarding arguments and expression.
While these concerns were infrequent, they reveal a more
troubling aspect of using sophisticated, general-purpose
models in deeply-contextualized educational environments.

In addition to content bias, the risk of Al reliance also exists.
With effective feedback systems in place, there is a danger of
instructors avoiding the feedback loop which stops
engagement with content. This gives birth to a new risk as
feedback may become repetitive, monotonous, or out of
alignment with the course changes without human oversight.
In addition, students may presume authority surrounding Al-
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augmented feedback especially when it is polished, refined,
or framed in formal syntax.

Such systems raise additional privacy and data protection
issues. Anonymized datasets governed with strict policy
frameworks will be required. Access to learner submissions
at scale may allow for supporting or personally identifiable
information to be inadvertently disclosed. Sensitive
information may also be disclosed. In compliance with legal
frameworks such as GDPR, FERPA, and privacy laws,
clearer data governance, anonymization protocols, and opt-
out options must be established.

Finally, the use of LLMs L raises ethical considerations
surrounding authorship, instructional agency, and the
presence of a human educator. The divide between teaching
and machine instruction begins to soften when machines
administer emotional affirmation and critique. We should
always try to control and be careful of technologies that
substitute some elements Of teaching that ought to be
retained—the relational, empathetic, critical, and deeply
human dimensions of teaching. These technologies should
ideally be able to supplement, not replace, educators’
authentic interactions with students.

VI. CONCLUSION

6.1 Summary of Contributions

This research examined the capabilities of LLMs, particularly
GPT-3.5 and GPT-4, in augmenting feedback mechanisms
within MOOCs. With systematic scrutiny spanning several
disciplines and thousands of learner engagements, our studies
showed that LLMs achieved remarkable feedback
construction that was insightful and contextually relevant in
relation to instructors’ expectations.

In particular, GPT-4's feedback was rated highly with respect
to BLEU and ROUGE scores as well as overall feedback
from peers and instructors. In addition, GPT-based systems
drastically outperformed the traditional NLP engines in
speed, usefulness, and breadth of assessment. Al feedback
resulted in learners becoming more motivated and satisfied
with the tasks at hand, enhancing active participation with
assignments.

Improvements extended beyond the technical aspects too.
The models demonstrated sophisticated personalization in
tailoring responses considering the content, tone, and learner
level which is impossible with rule-based feedback systems.
In addition, the system seems to have the capability to
provide equal coverage in feedback to members from
different demographic groups, thus suggesting potential for
deployment at scale for increased inclusivity.

6.2 Practical Implications for MOOC Platforms

These results directly affect the strategies of MOOC
providers specifically in the areas of engagement and learner
support. Conventional feedback systems based on instructor



Assessing the Impact of Large Language Models on the Scalability and Efficiency of Automated Feedback Mechanisms in Massive Open

or peer review are too slow, inconsistent, and unscalable.
These are some of the gaps that LLMs can fill by providing
feedback that is automated, timely, and responsive to
individual learner requirements.

For educators, this translates to less time spent on grading and
more time spent mentoring learners or developing
instructional materials. For the platforms, it translates to
better learner retention and higher rates of course completion.
LLMs can be incorporated into existing LMS frameworks via
APIs, providing responsive feedback in real time across
different content, subjects, and formats, professionally and
timely.

Cost is still a concern. The best performance comes from
GPT-4, but its operational cost is steep. GPT-3.5 is a stronger
middle option, balancing quality and efficiency. A blended
approach can be adopted where Institutions save GPT-4 for
more complex assignments requiring deeper insight and use
lighter models for more straightforward tasks.

Privacy and data protection policies must receive equal
attention. Platforms must comply with data protection
policies concerning learner identity feedback systems require
submission due to giving structured feedback identity
protection, anonymization, and audit trails policy regulation
as well as implement obscured processes where identities are
hidden and auditability policies ensuring that records can be
checked are put in place.

6.3 Recommendations for Adoption

To mitigate social, ethical trust, and safety risks, the
following best practices are suggested for integrating LLMs
into the MOOC framework. First, implement gradual steps.
For onboarding, use Al-provided feedback on formative
assessments. This will help ease both learners and instructors
into the system and build confidence. Expand scope to more
critical tasks later.

Second, delay full automation. Even the most modern of
models require instructor approval for fault-sensitive issues
or evaluations, as some topics need critical gaze attention.
With instructor-in-the-loop models, quality control is
preserved and system behaviour can be adjusted over time.

Third, provide justification. Reporting should explain why
learners did not receive personalized feedback, especially
when an Al system is used. Learners must have the ability to
contest erroneous or inconsistent feedback. Comprehensible
systems offer accountability while autonomous systems uplift
learners.

Lastly, inclusivity must be deprioritized. Prioritize testing
during refinement to keep bias out of the fine-tuning process.
Test across demographics with divergent models. All levels
of Al as an educational tool must be just, transparent, and
equitable.

Online Courses

To conclude, usage of LLMs opens up many opportunities on
automating feedback features in MOOCs. These models can
be leveraged to greatly improve learner experiences, enhance
instructor support, and outcomes at scale educational
outcomes when accompanied with appropriate ethical
frameworks and technical infrastructure.

VII. FUTURE WORK

This research did demonstrate a promising use of Large
Language Models towards automating feedback on MOOCs,
however, multiple aspects still require attention in both
research and development. One such aspect includes LLMs's
feedback diversity and cultural adaptability. Subsequent
versions of the LLMs should be trained on data encompassing
a broader spectrum of subjects, languages, and learner
demographics to make the feedback more relevant,
contextually sensitive, and pedagogically appropriate. Also,
LLMs's multilingual feedback generation capabilities need
attention, particularly for learners situated in non-English
speaking countries where performance is lacking.
Furthermore, providing LLMs with the ability to respond
more human-like by, for example, emotionally recognizing
learners' encouragement or frustration could enhance make
the responses appear more supportive.

The use of LLMs in chat support services or Al assistants
with MOOCSs classes are other areas with great potential.
Integrating feedback systems together with conversational
agents would allow learners to actively engage in error
correction and error reflection on a deeper level. Furthermore,
exploring how LLMs can be incorporated into learning
systems that not only provide feedback, but adapt the
instruction content based on the performance of the learner,
would be beneficial in future LLM research. For safe and
sustainable use, however, addressing issues such as scaling
up the infrastructure, lowering token costs, and using bias
mitigation through reinforcement learning will be essential.
Overall, with the advancement of LLMs, the scope of their
application in intelligent tutoring systems and digital
education will increase, which means that both educators and
decision makers will need to work together with technology
experts constantly.
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