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Abstract - The rapid proliferation of Massive Open Online 

Courses (MOOCs) offers particular difficulties in providing 

timely and high-quality personalized feedbacks associated with 

customer interactions at scale. This research examines the gap 

which Large Language Models (LLMs) address with focus on 

automation in providing timely feedback and the scalability 

efficiencies of LLMs in the feedback scope provided in MOOC 

settings. Adopting a results-oriented experimental approach to 

feedback systems, LLMs like GPT-3.5 and GPT-4 are 

implemented across varying course contexts and learning 

groups. Their outputs are benchmarked against traditional 

systems through semantic similarity calculations, response time 

measurement, cost evaluation, and learner satisfaction metrics. 

LLMs’ ability to comply with instructor feedback while 

improving responsiveness and personalization outpaced 

traditional methods in every context analyzed, with satisfaction 

scores outperforming pre-set benchmarks across the board. 

Learners reported appreciation towards AI responses, citing 

enhanced understanding and interaction, overshadowed by 

defendable claims of bias, genericity, and flawed constituent 

pressure. All in all, the study provides concrete guidance 

illustrating the ways in which LLMs reconfigure pedagogical 

feedback mechanisms alongside MOOCs, shaping subsequent 

shifts in the design and integration strategies utilized in e-

learning frameworks across the world. 

Keywords: Large Language Models (LLMs), Automated 

Feedback, MOOCs, Educational AI, Feedback Scalability, 

GPT-4, Intelligent Tutoring Systems, Semantic Evaluation, 

Learner Engagement, Personalized Learning, Natural 

Language Processing in Education 

I. INTRODUCTION 

1.1 Background and Motivation 

The advent of Massive Open Online Courses (MOOCs) has 

changed the educational paradigm by providing scalable and 

affordable education to people around the world (Zhu et al., 

2020). They have grown exponentially over the past decade. 

Thanks to the availability of mobile devices and broadband 

internet, students from every corner of the globe can now 

access university level courses without financial or 

geographic constraints (Alraimi et al., 2015). While the broad 

availability of knowledge is a tremendous leap forward, it 

poses a significant challenge in maintaining quality in the 

form of timely and personalized responses in feedback for 

millions of learners at the same time (Khalil & Ebner, 2014). 

Feedback plays an important role in the learning process. It 

informs learners, helps to reinforce proficient understanding, 

and identifies problem areas. However, in the case where 

MOOCs scale up to enrol thousands, and in some cases 

millions of learners, conventional feedback approaches 

become unmanageable. Instructor provided feedback, despite 

the valid pedagogic rationale, does not scale. Teaching 

assistants step in to help, but even their participation cannot 

sustain the pace of growth in course enrolment (Moore & 

Blackmon, 2022). 

This feedback bottleneck has been traced in Figure 1, which 

plots the illustrative increase in MOOC enrolment and 

feedback metrics from 2015 to 2024. Enrolment numbers 

grew from 20 million in 2015 to over 250 million in 2024, an 

increase of more than tenfold. On the other hand, feedback 

metrics—that is, all scenarios in which a learner expected or 

received an interaction—grew from 5 million to 130 million. 

This trajectory of growth captures the fundamental problem 

of institutional inertia in the face of exponentially growing 

learner demand. 

 

Fig. 1 Growth in Enrolment and Feedback Volume in MOOCs (2015–

2024) 

In addressing this, the platforms have tested diverse methods, 

including peer review processes, teaching assistants, and 

automated scoring through natural language processing 

http://www.trp.org.in/
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(NLP) based on explicit rules. All solutions present unique 

challenges. Feedback provided by peers is easy to scale and 

difficult to control. Instructors give useful feedback but 

cannot provide it to every learner. Automated systems operate 

quickly, but their feedback is often devoid of detail and 

subtlety. 

The invention of Advanced Natural Language Processing 

Features, especially the development of Large Language 

Models (LLMs) such as GPT-3.5 and GPT-4, has provided 

new opportunities (Silva et al., 2025; Prasath, 2023). These 

models are capable of context comprehension alongside 

submission parsing, combining to produce hyper-

personalized feedback akin to human text (Rahman & 

Watanobe, 2023; Casimira & Francis, 2025). Unlike the 

earlier LLMs which utilized rule-based logic systems, 

modern LLMs rely on deep learning and transformer-based 

architecture, making their outputs and responses adaptable, 

contextually appropriate, and educationally reciprocal. Thus, 

LLMs would be beneficial for educational settings which 

prioritize scalability and personalization. 

1.2 Problem Statement 

As MOOCs evolve, the issue of feedback remains complex 

and enduring. Learners still report dissatisfaction regarding 

the feedback’s timeliness, clarity, and relevance—even after 

multiple cycles of adaptive feedback systems (Kizilcec et al., 

2017). This gap, in addition to being a hurdle in learning, 

fosters increased dropout rates, diminished motivation, and 

accelerated learner disengagement. 

Currently, feedback in MOOCs is primarily offered through 

three channels: peer assessments, instructor feedback, and 

comments generated by obsolete AI systems (Fauvel et al., 

2018). The diagram depicted in Figure 2 illustrates the 

approximate distribution of different feedback types across 

major MOOC platforms. Feedback provided through peers 

makes up 40% of posts, with instructors and assistants 

making up the responding 35%, and AI-based systems 

providing 25%. 

 

Fig. 2 Distribution of Feedback Types in MOOC Platforms 

In their own ways, every approach has issues. Peer feedback, 

for example, while democratically scalable, suffers from a 

lack of consistency and tends to be devoid of pedagogical 

merit. Instructor feedback is consistent and valuable, but it is 

not scalable to large cohorts of learners (Zawacki-Richter et 

al., 2019). AI feedback—a product of earlier NLP approaches 

to AI—follows inflexible guidelines and is devoid of 

personalization based on context, history, or previous 

interactions with the learner, making it highly contextual and 

personalized. 

Summarized in Table 1 are these limitations as well as their 

consequences. The feedback framework is limited in its 

coverable scalability, consistency and delay quality, lack 

personalization, and high operational requirements—

systemic problems of MOOC systems. Overcoming these 

challenge requires a shift in the entire paradigm, not mere 

enhancements. 

TABLE I SUMMARY OF CHALLENGES IN CURRENT MOOC 
FEEDBACK SYSTEMS 

Challenge Description 

Scalability of Instructor 

Feedback 

Instructors cannot scale with 

rising enrollment volumes 

Inconsistency in Peer 

Review Quality 

Peer reviews vary significantly in 

quality and depth 

Delayed Feedback Delivery Feedback is often provided days 

or weeks after submission 

Lack of Personalization Feedback is typically generic and 

not tailored to learner context 

High Operational Costs for 

Manual Evaluation 

Institutions incur high costs hiring 

teaching assistants or evaluators 

With the gaps highlighted in the preceding context, the 

present study explores the extent to which Large Language 

Models can fill this void by providing personalized, real-time, 

and pedagogically valuable feedback at the scale required by 

modern MOOCs. 

1.3 Objectives of the Study 

This study focuses on evaluating the capabilities of LLMs 

regarding automation and its efficiency within the MOOC 

paradigm as an ecosystem. It evaluates the semantic and 

instructional aspects of feedback offered by LLMs relative to 

instructor feedback and those produced by earlier versions of 

NLP systems (Liu et al., 2024). It is important to assess 

whether LLMs are able to provide human-level feedback, and 

if not, whether they at least do better than traditional 

automated systems in terms of usefulness, clarity, and 

contextual relevance. 

Another one of the objectives is to evaluate operational 

efficiency—especially LLMs and automated reasoning tools 

in relation to latency, cost, and stability during concurrent 

load (Jiang et al., 2024). MOOCs have to cater to a global 

audience in different time zones and with varying levels of 

technological readiness. So, the ability of the model to scale 

with demand while sustaining the same level of quality 

becomes crucial (Ibrahim, 2020; Anandhi et al., 2024). 
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The study also investigates learner perception, which is rarely 

given attention with regards to its technical aspects. When it 

comes to feedback, it is not only about getting the right 

information, but also the information’s tone, motivational 

value, and overall value as perceived by the learner. Analysis 

of learner responses to AI feedback will be conducted through 

post session surveys, rating instruments, and open-ended 

qualitative comments (Basri, 2024). 

Ultimately, this research tries to develop a roadmap for 

incorporating LLMs into current MOOC systems. It 

examines system deployment architectural, pedagogical, and 

ethical concerns simultaneously. This encompasses 

assignment type versatility, multi-language environment 

scalability, and algorithmic bias mitigation. 

1.4 Contribution and Scope 

This document enhances AI-assisted education discourse 

with one of the earliest comprehensive, data-backed analyses 

of LLMs concerning feedback provision in MOOCs. Also, 

this study is unique because it neither focuses solely on 

pedagogical constructs nor on technical NLP evaluation 

frameworks, but rather integrates the two. It assesses the 

feasibility and pedagogical soundness alongside the precision 

of LLM feedback within large-scale teaching settings. 

The association of multiple MOOC ecosystems, academic 

disciplines, and diverse learners defines the scope of this 

research. It incorporates STEM, business, and humanities 

courses to test the model’s generalizability. Feedback types 

assessed include short-answer normed correction grading, 

essay and concept explanation grading, and more. 

A results-oriented approach is fundamental to the study. It 

makes use of quantitative measures like BLEU and ROUGE 

for semantic evaluation, latency logs for processing speed, 

and cost evaluation predicated on token usage of different 

model types, for instance, GPT-3.5 and GPT-4. Moreover, 

human rating of quality and satisfaction is incorporated to 

gauge the subjective assessment from all users, learners, and 

educators professionally. 

In addressing the technological, pedagogical, and operational 

elements of automated feedback, the work is both a 

benchmark and a pathfinder. It helps target the needs of 

MOOC providers, educational technologists, instructional 

designers, stakeholders, and policy shapers. It also invites 

further exploration of adaptive feedback mechanisms, real-

time action enablement in learning, and socially responsible 

artificial intelligence in teaching and learning technologies. 

II. METHODOLOGICAL FRAMEWORK 

2.1 Overview of Large Language Models (LLMs) in 

Educational Context 

Large Language Models (LLMs) such as GPT-3.5 and GPT-

4 offer capabilities that can fundamentally change the way 

communication, creativity, and problem-solving are 

approached. In the education sector, their potential is even 

more striking. They can provide contextually relevant 

detailed feedback, perform at-level text and speech 

generation, proficiently execute instructional dialogues, and 

customize interactions with learners at the input level 

(Kasneci et al., 2023). Thus, LLMs have the prospects of 

fostering the personalization and scalability of education, 

particularly in the massive open online courses (MOOCs) 

context. 

Unlike previous natural language processing systems that 

depended on domain templates or rigid rules, LLMs utilize 

extensive text corpora to train, which facilitates 

generalization across numerous topics and formats. The 

transformer's architecture is able to model longer 

dependencies, resulting in the generation of fluent, 

syntactically, and richly semantically outputs (Wei & Lau, 

2023). For educational purposes, this architecture aids in the 

analysis of learner submissions, which may include essays, 

code excerpts, or explanatory reasoning, and provides 

coherent pedagogically aligned feedback (Stamper et al., 

2024). 

The possibilities of generating educational feedback using 

LLMs relies on their capacity to provide multi-layered 

evaluations. They are capable of restructuring arguments, 

discerning subtle nuances, conceptually misinterpret, and 

even adopt Socratic personas (Blasco & Charisi, 2024). Their 

potential in this area makes them ideal for MOOCs, where the 

breadth and magnitude of learner submissions far outstrips 

instructor feedback resource availability. 

2.2 Experimental Design for LLM-Based Feedback 

Evaluation 

To assess MOOSE’s feedback delivery effectiveness using 

LLMs, an experiment was conducted with a result-focused 

approach. The experiment's subjects were drawn from several 

online courses offered across several core areas, including 

computer science, business, humanities, and data science. 

These courses included formative and summative 

assessments of various types that typically demanded written 

answers in the form of short answer essays or more complex 

open-ended problems (Dempere et al., 2023). 

The study deployed several distinct LLMs, including variants 

of GPT-3.5 and GPT-4, establishing them within a feedback 

loop in an existing MOOC scaffolding platform. Learner 

submissions were processed in real time or in batches subject 

to platform limitations, with feedback generation occurring 

simultaneously or sequentially (Jia et al., 2024). For most 

platforms, verifiable textual feedback was captured, with 

structured comment data being catalogued alongside 

commentary contributed by instructors and peers over time, 

enabling non-temporal comparisons. 

The assessment structure resulted in design focusing on 

multiple LLMs to each provide a single feedback item, thus 
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providing mechanisms capturing several performance aspects 

which include semantic correctness, contextual relevance, 

generation delay, token utilization, and learner expectation. 

Feedback in this case was distinct for type as cursive for 

template-like, brief, and minimally adjusted input versus 

contextualized, learner-specific, and detailed for 

personalized. Figure 3 illustrates difference in token 

expenditure between generic and personalized feedback. 

 

Fig. 3 Token Utilization per Feedback Type (Generic vs Personalized) 

As the results show, there is a considerable increase in token 

usage for personalized feedback across all content types. For 

instance, the tokens needed for personalized essay feedback 

were almost twice as much as those needed for generic 

feedback. This demonstrates the trade-off between the 

feedback provided and the computational resources 

consumed, which is very important in large-scale scenarios. 

Aside from token consumption, the semantic overlap of 

LLM-generated feedback texts and instructor-supplied 

feedback texts was evaluated with vector space similarity 

measures as well as manual reviews. Figure 4 shows that 

heatmap evaluation revealed largely overlapping semantic 

regions across most topics, most notably in more technical 

fields such as algorithms and machine learning, where LLMs 

strongly aligned with the expert feedback provided. 

 

Fig. 4 Semantic Overlap of LLM-Generated Feedback vs Instructor 

Feedback  

With respect to instructional tone, depth, and specificity of 

human-generated feedback, GPT-4 consistently 

outperformed other models, especially in the more abstract or 

higher-order cognitive work like ethics or data analysis. This 

demonstrates the capacity of modern LLMs not merely to 

reproduce instructor output, but to augment it, and therefore 

scale it. 

2.3 Dataset Description and Preprocessing Techniques 

As it pertains to the feedback engine's testing and training, a 

hybrid educational dataset, both proprietary and publicly 

available, was employed. The corpus is made up of: 

 MOOC QA Banks from open repositories such as 

OpenEd and Coursera. 

 Human-AI dialogue transcripts designed specifically 

for teaching and learning environments. 

 Learner submission and instructor feedback pair 

archives from old online courses. 

 Domain expert validated synthetic question-answer 

pairs. 

A great deal of preprocessing was done before using these 

datasets in any of the models. Every piece of text was 

meticulously normalized and tokenized to the most basic 

units of words. Cleansing processes included stripping away 

irrelevant, non-contributory metadata, system-generated log 

files, misspellings, profanity, spelling errors, nonstandard 

formatting, logographic texts, offensive content, and overly 

abbreviated texts (Omar et al., 2022). Ethical scrub was done 

by anonymizing identifiable information pertaining to the 

learners so as not to breach ethical compliance standards. 

In preparation for fine-tuning, feedback sample sets were pre-

structured by pedagogical intent and assignment type (error 

correction, encouragement, rubric-based evaluation) so as to 

aid in organizational clarity. Each sample comprised a learner 

submission and contextual cues, including the course title, 

topic, and a question prompt alongside feedback which was 

provided by an instructor, a peer, or a legacy feedback system 

(Algahtani, 2024). 

After preprocessing was completed, the dataset was divided 

into the training (70%), validation (15%), and test (15%) sets. 

Balanced stratified sampling was utilized to maintain equal 

representation across both the subject area and feedback type. 

In order to maintain evaluative rigor, the test set was 

completely isolated from the models during the training and 

fine-tuning stages. 

2.4 LLM Configuration, Fine-Tuning, and Deployment 

Parameters 

This study implemented four LLMs: two experimental 

models (LLM1 and LLM2) and two production-scale models 

(GPT-3.5 and GPT-4). The models differed in architecture, 

token limits, training scale, and fine-tuning strategies as 

outlined in Table 2. 
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TABLE II MODEL ARCHITECTURE, TOKEN LIMIT, TRAINING SET 

SIZE, AND FINE-TUNING PARAMETERS 

Model Architecture Token 

Limit 

Training 

Set Size 

Fine-tuning 

Dataset 

LLM1 Decoder 

Transformer 

2048 40B 

tokens 

MOOC QA 

Bank 

LLM2 Decoder 

Transformer 

4096 80B 

tokens 

Human-AI 

Dialogues 

GPT-

3.5 

GPT-3.5-

turbo 

8192 300B 

tokens 

Educational 

Prompts 

GPT-

4 

GPT-4 128000 1T+ 

tokens 

MOOC + 

Instructor 

Feedback Set 

All models were executed via Python-based API and 

controlled through a feedback submission module that 

formed part of the MOOC platform’s backend. Fine-tuning 

was performed incorporating supervised learning with 

respond labels assigned to feedback targets. Prompt 

engineering fostered the desired outcomes while ensuring 

adherence in structure, clarity, and tone, and overall 

consistency. 

Efforts focused on the mitigation of hallucinations, 

grounding, and biased language in the generated responses 

while protecting identity language. Ensuring model 

compliance with academic rigor, inclusivity, and respectful 

language policies was directed through prompt restrictions 

and system messages. 

Deployment utilized Docker for container-based scaling and 

serverless functions for dynamic load balancing. For 

performance optimization, interactions were continuously 

monitored for latency, throughput, and token consumption. 

III. EXPERIMENTAL SETUP 

3.1 Platform Integration and Feedback Delivery Mechanism 

Incorporating large language models (LLMs) into a MOOC 

environment poses numerous design and implementation 

problems. This research effort was developed on a MOOC 

system with AI capabilities that offers both live and recorded 

classes. The platform featured modular architecture with an 

API-based feedback component that interfaced with existing 

workflows for course completion and delivery. This 

architecture enabled feedback to integrate effectively with 

assignment submission systems, learner engagement 

interfaces, and instructor feedback systems. 

Learner submissions activated a backend workflow that sent 

the text to one of the three feedback generation methods: a 

legacy rule-based NLP, GPT-3.5, and GPT-4. Evaluation 

fairness was maintained by randomly allocating these engines 

to content and test group, provided that the model-agnostic 

assignment prompt was applied universally. 

The feedback engine delivered responses that were 

automatically processed and recorded into the platform's 

LMS system, with very little latency between submission and 

learner view update. Custom loggers monitored the feedback 

content along with its generation time, token expenditure, and 

relevant downstream actions by learners, such as clicks, 

ratings, and responses to the feedback. Instructors could 

analyse and edit AI-generated feedback as they deemed fit 

during the pilot testing phases. 

In order to maintain pedagogical integrity, each instance of 

feedback was encoded with a structure indicating the specific 

feedback category (for example, explanation/clarification of 

the concept, evaluation, and feedback against rubrics) as well 

as the model type that generated the feedback. This provided 

a means for conducting comparative analysis while 

maintaining transparency and traceability across the lines of 

artificial intelligence model responses in feedback provision. 

3.2 Learner Grouping and Control Conditions 

The study incorporated an overall sample of 2000+ learners 

from five distinct subject areas, which include information 

technology, ethics, marketing, data science, and academic 

writing. Each subject cohort was sampled from freely 

accessible enrolment MOOCs hosted on a leading ed-tech 

platform. Participants were assigned into experimental arms 

using random allocation with stratification based on 

demographic variables, prior coursework, and engagement 

levels with the course content. 

There were three primary experimental groups: 

 Control group: Traditional NLP feedback provided. 

 Experimental group 1: Feedback generated by GPT-3.5 

provided. 

 Experimental group 2: Feedback generated by GPT-4 

provided. 

Every cohort worked with identical tasks and learning 

materials, thus the only difference across conditions was how 

the feedback was delivered. This control of the feedback 

discriminant allowed for an unambiguous evaluation of the 

performance results. Learners’ exposure to various feedback 

methods remained uniform throughout the two-week testing 

period, during which all tasks were submitted and considered. 

Teaching faculty were made aware of the feedback produced 

with AI tools but were requested not to engage unless there 

were clear ethical or factual problems. Participants were 

invited to evaluate the feedback given to them after every 

assignment through a 5-point Likert scale alongside optional 

comments, enriching the assessment with qualitative data. 

3.3 Performance Metrics and Evaluation Criteria 

The feedback models were assessed using a framework that 

combined semantic, operational and behavioural analysis. 

This included the models’ performance for the following 

metrics: 
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1. Feedback Latency – Defined as the time an educator 

takes to submit their work and receive feedback. Low 

latency equates to a more favourable user experience. 

2. Feedback Cost - The monetary and computational cost 

associated in the generation of feedback which includes 

API token use and infrastructural costs. 

3. Semantic Quality – Documented through cited language 

evaluation methods, BLEU and ROUGE scores along 

with instructor estimates in judging the quality of the 

overall feedback regarding its tone, relevance and 

accuracy. 

4. Learner Satisfaction – Determined from the post survey 

ratings and assessment of behavioural metrics such as 

time spent on feedback, action taken on suggested 

changes, resubmissions, and overall feedback cycle. 

5. Instructor Correction Rate – A proxy measurement of 

accuracy derived from the frequency of instructors 

revising or rejecting the AI-assessed feedback. 

6. Feedback Engagement – Detected through the use of 

interaction data made up of clicks, hovers, and 

engagement time with explanations and resources 

linked within the feedback. 

In figure 5, we see a comparison of average feedback latency 

across all rounds of feedback. According to the data 

presented, GPT-4 was and continues to be faster than both 

GPT-3.5 and traditional NLP systems by approximately 1.8 

seconds of average latency. Following closely was GPT-3.5 

at roughly 2.2 seconds while traditional NLP systems were 

the slowest, coming in at 3.5 seconds per feedback response. 

 

Fig. 5 Average Feedback Latency (GPT-3.5 vs GPT-4 vs Traditional NLP) 

As demonstrated, these figures reveal the responsiveness of 

the LLMs in real-time, particularly with efficient caching and 

pre-processing. The benefits of lower latency are self-evident 

but greatly enhanced in the context of learning and self-paced 

environments requiring immediate feedback. 

3.4 Feedback Latency and Cost Tracking 

There is no denying the added responsiveness, but these 

benefits come at a price due to the tokenized structure and the 

infrastructure burden. For each model type, the average cost 

of feedback was calculated per learner, considering inference 

and server costs. As traditional NLP systems take the lead 

with the lowest operating cost of $0.01 per student, followed 

by GPT-3.5 at $0.07, and GPT-4 systems last at an operating 

cost of $0.12. 

 

Fig. 6 Feedback Generation Cost per Student vs Model Type 

While instructional support provided through GPT-4 is more 

costly on a per-student basis, the quality and satisfaction 

improvements noted in earlier sections often make the cost 

worthwhile. Nonetheless, budget-strained platforms will find 

GPT-3.5 more appealing because it strikes a good balance 

between cost and effectiveness. 

Cumulatively, server activity, model output, and scalability 

with regard to peak demand were analysed simultaneously. 

GPT-4 also needed additional memory resources and was less 

flexible with concurrent load increase surges. In contrast, 

GPT-3.5 sustained stable latency with varying numbers of 

users. These operational aspects are important for all 

institutions considering large LLM implementations as they 

focus on peak demand periods like exams or assignment 

deadlines. 

This table is taken from the description of experimental 

cohorts and course subjects along with metrics pertaining to 

the volume of feedback for evaluation outlined in Table 3. 

TABLE III EXPERIMENTAL COHORTS, COURSE SUBJECTS, AND 

FEEDBACK VOLUME STATISTICS 

Cohort 

ID 

Subject 

Area 

No. of 

Learners 

Total 

Feedback 

Instances 

Delivery 

Mode 

C101 Computer 

Science 

500 2500 Live + 

Async 

C102 Ethics 300 1200 Async 

C103 Marketing 400 1800 Live 

C104 Data 

Science 

450 2200 Async 

C105 Writing 350 1500 Live + 

Async 

In this case, the feedback load per cohort was tracked over 

multiple submissions and feedback rounds to capture the 

submission and GPT-feedback cycles. This tells us diverse 

instructional and scholarly contexts, the models performed 

reliably. 



Assessing the Impact of Large Language Models on the Scalability and Efficiency of Automated Feedback Mechanisms in Massive Open 

Online Courses 

 

281                IJISS Vol.15 No.2 April-June 2025 

IV. RESULTS AND ANALYSIS 

4.1 Accuracy and Semantic Quality of Feedback 

The main goals of the current research were measuring the 

accuracy of LLMs compared to traditional NLP systems and 

instructor mechanisms, as well as determining how well 

semantically feedback was aligned with the text by LLMs and 

NLP systems. To achieve this goal, combination of automated 

natural language evaluation metrics BLEU and ROUGE-L 

alongside expert judgments from various academic fields was 

performed. 

The gap between instructor responses and LLM-generated 

feedback was thoroughly filled semantically with humans 

written feedback where LMs algorithms received L 

instructors expressed support for the L LM feedback aligned 

sentiment by noting provided comments. An ensemble of 

instructors was presented with algorithms data science 

marketing writing topics and ethics generating a heatmap 

illustrated post description in. 

 

Fig. 7 Topic-Wise Feedback Quality Rating (Manual vs LLM) 

In contexts like the data driven and logical ones, GPT-4 was 

found to perform at par or even surpassing the manual 

feedback attrition. The feedback ascertained expressed a 

critique where the LLM fell behind in meaning making and 

reflective engagement in think pieces like Ethics and 

Marketing dissertations but was deemed robust overall. 

Table 4 captures the results of BLEU and ROUGE-L analyses 

alongside the average human evaluation scores in the context 

of qualitative analysis. It was revealed that GPT-4 achieved a 

BLEU score of 0.81 and a ROUGE-L score of 0.84, 

significantly outperforming GPT-3.5 and other NLP 

models—both GPT-3.5 and conventional NLP models were 

outperformed by GPT-3.5. Human evaluators in the study 

rated GPT-4’s feedback an average of 4.6, which showcased 

its technical adequacy alongside perceived helpfulness. 

TABLE IV EVALUATION SUMMARY: BLEU, ROUGE, AND 

HUMAN RATINGS ACROSS MODELS 

Model BLEU 

Score 

ROUGE-

L 

Average Human 

Rating (out of 5) 

Traditional 

NLP 

0.58 0.61 3.7 

GPT-3.5 0.72 0.75 4.2 

GPT-4 0.81 0.84 4.6 

These conclusions validate the hypothesis that recent LLMs 

are capable of generating contextually relevant and 

semantically rich feedback that approaches the level of expert 

instruction, which affirms their use in advanced learning 

systems with complex frameworks. 

4.2 Learner Satisfaction and Usefulness Perception 

Moving beyond the semantic dimension, the learners’ 

endorsement of feedback is vital for its uptake and 

educational influence. To determine this, all learners 

participating in the experiment were requested to evaluate the 

feedback they received and subsequently provide a 

justification for what they found most valuable. 

Feedback was classified into four major categories: resource 

suggestion, concept clarification, error highlighting, and 

encouraging praise. As presented in Figure 8, learners 

identified the combination of concept clarification and error 

highlighting as the most beneficial for feedback with 

frequencies of 35% and 30% respectively. While the 

suggestions and encouragement were helpful, they were 

viewed as secondary. 

 

Fig. 8 Learner Perceived Usefulness of Feedback Categories 

Qualitative feedback captured on the trend analysis 

demonstrated the integration of AI into instructional practice. 

Many learners expressed satisfaction with the accuracy and 

tone of GPT-4 feedback, stating that it “seemed like a real 

tutor was giving recommendations.” Some pointed out 

targeted misconceptions and corrective strategies as equally 

helpful. Notably, a significant amount of learners indicated a 

preference for LLM feedback to feedback given by peers, 

citing greater consistency and less ambiguity as dominant 

reasons. 
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Survey results also showed learners with GPT-4 feedback 

were more likely to revisit and edit assignments, suggesting 

the availability of quality feedback has a greater incentive 

impact that motivates the learner to engage more deeply with 

the instructional content. 

4.3 Instructor Validation Scores and Correction Rates 

Instructor validation of LLM feedback accuracy required 

educators to assess a random sample of responses for 

accuracy suggesting a LLM attributed feedback comment 

was correct, hence requiring no changes. Correction rate was 

adopted as a proxy score for the presence of logical or 

educational error(s). Figure 9 shows the distribution of 

corrections across all model outputs for each feedback type. 

 

Fig. 9 Instructor Corrections Required per Feedback Type 

Not surprisingly, conventional NLP technologies had the 

highest correction rates, especially with longer-form 

responses like essays. With GPT-3.5, I had to intervene 

moderately, mostly for tone and completeness. GPT-4 

required the least corrections, most of the flagged concern 

issues being overgeneralization and task-specific 

terminology gaps in more generalized domains. 

These results imply that while LLMs do not supplant the need 

for validation from domain experts—especially in sensitive 

and highly specialized matters—they do lessen the burden 

placed on instructors. Furthermore, instructors reported that 

checking the feedback generated by LLMs was faster than 

checking peers’ responses or checking the original feedback, 

which reiterates the efficiency gain. 

4.4 Model Scalability under Concurrent Load 

An essential consideration when assessing the pragmatic 

application of LLMs in MOOCs is the ability to scale 

effectively with concurrent users. As moderation feedback 

models serve thousands of learners engaging with course 

materials at the same time, they face the limits of high latency, 

consistent output, and low system strain. 

The performance of models during peak load times was 

assessed with the aid of real-time server logs and cloud 

monitoring systems. The feedback node's concurrent user 

count increased to 100 with each user’s input being processed 

as a separate feedback node, and with barely any increase in 

processing delays, GPT-3.5's performance remained stable. 

Moreover, GPT-4, who is known to be more resource-heavy, 

still responded under 2 seconds with 60 concurrent users. 

The efficiency of traditional NLP systems came at the cost of 

contextual inconsistency, often needing multiple backend 

calls for template piecing to be coherent. These systems were 

cost-efficient but lacked personalization and adaptability. As 

for GPT-4, the decrease in its feedback throughput was 

compensated for by the increase provided through accuracy 

and revision rate. These findings allow greater flexibility in 

adopting a hybrid strategy. 

These findings pave the way for a hybrid adoption strategy in 

large-scale educational systems. With these conclusions, it is 

suggested that GPT-3.5 is used as the primary default engine 

for general coursework, with only advanced learners 

requiring nuanced feedback being serviced by GPT-4 

reserved for high-stakes assignments. This enables setting 

performance targets alongside cost control while maintaining 

quality across a wide control span. 

V. DISCUSSION 

5.1 Interpretation of Observed Improvements 

The findings from this investigation strongly suggest that the 

integration of Advanced Generative Pre-trained 

Transformers, particularly versions 3.5 and 4, into the 

feedback architecture of MOOCs (Massive Open Online 

Courses) enhances the quality, speed, and scalability of 

feedback automation. All the improvements were consistent 

across different domains and types of feedback, both 

subjectively (learner and instructor ratings) and objectively 

measured (BLEU, ROUGE). 

Feedback produced by LLMs (Large Language Models) 

aligned with the instructional goals and intent, as well as the 

semantics of human feedback at no lesser than average 

overlap scores and high human evaluation grades. 

Remarkably, GPT-4 outperformed earlier legacy systems by 

responding in-context to learners’ submissions far more than 

older NLP systems, demonstrating extensive contextual 

relevant response capabilities tailored to learners' 

submissions. This is remarkable in sophisticated and abstract 

tasks such as essays and ethical analyses, which refrain 

traditional automated kinds of systems from executing the 

intricacies of arguments and interpretations. 

Instructors experienced a reduction in the need to revise and 

adjust feedback manually, which further suggests automation 

within pedagogy is working towards integrating seamlessly. 

The findings suggest not only operational improvements but 

also a more profound automation of pedagogical processes, 

enabling human educators to shift their focus from repetitive 

evaluations to strategic engagement and mentorship of 

learners. 
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From the learners' perspective, AI-provided feedback was 

well-received, with a considerable number expressing that the 

guidance and rationale provided were articulated and framed 

in a manner that was constructive and encouraging. This 

change in perception by learners reinforces the argument that 

LLMs serve a purpose beyond being technological 

instruments; they have the potential to transform learning 

processes and impact results profoundly. 

5.2 Role of LLMs in Enhancing Personalization at Scale 

This study demonstrated one of the most significant advances 

offered by LLMs, which is the ability to provide personalized 

feedback to each individual learner, something that has never 

been possible within the MOOC framework. In comparison, 

traditional automated systems are governed by rules and 

templates, which leads them to treat all learners in a 

standardized way with little to no variation. LLMs, on the 

other hand, respond to learner submissions, writing style, and 

even assumed proficiency level, making them far more 

responsive. 

The model’s tailored feedback capabilities were evident in its 

varied output. As case in point, the same question was 

answered differently depending on whether the learner 

revealed a partial understanding, confusion, or strong 

understanding. Instructors noted that this type of responsive 

variation seemed to emulate formative feedback provided in 

one-on-one tutorial sessions, except this time, it was provided 

en masse by a machine. 

In addition, personalization went beyond content to include 

tone and pacing. The models were able to alter their feedback 

presentation to match the learner’s level of formality. In some 

instances, they even provided contextually-appropriate 

suggestions that aligned with learners' interests. These 

adaptive capabilities are defining characteristics of why 

LLMs are so useful in contemporary e-learning settings. 

Equally important is providing personalized experiences to 

all users regardless of their background. As illustrated in 

Figure 10, the system achieved fairness in distributed 

personalized feedback across different learner demographics. 

Measures of feedback equity and satisfaction remained 

consistently high among learners from the Global South, 

older adults, and non-English speaking participants—groups 

traditionally overlooked by automation systems. 

 

Fig. 10 Feedback Equity Across Learner Demographics (Region, 

Language, Age) 

These outcomes corroborate not only the effectiveness of 

personalization but also the model’s ability to promote 

inclusiveness and accessibility. When responsibly managed, 

LLMs have the potential to provide equitable feedback by 

ensuring that learners, irrespective of their geography, 

language, or age, receive high-quality, tailored responses 

crafted for their individual learning pathways. 

5.3 Challenges in Integration with MOOC Platforms 

Regardless of the encouraging outcomes, the incorporation of 

LLMs into current MOOC frameworks presents several 

concerns. One major issue stands out—computational cost. 

As discussed previously, large-scale GPT-4 implementation 

faces particularly harsh institutional funding constraints due 

to the token-based pricing paradigm. Although GPT-3.5 

offers a more affordable option, it also demands substantial 

cloud resources, especially in real-time or high-concurrency 

environments. 

Another challenge in implementation is the compatibility of 

content. Not every type of assignment lends itself to AI 

evaluation. For example, tasks that require highly subjective 

self-contextualization, effective storytelling, and ethics 

deliberation in given context discussive frameworks may be 

too advanced even for highly sophisticated LLMs. Along 

with this, as much as models can cope with multilingualism, 

the sinking incisiveness of fluency in lower-resourced 

languages hampers freely global deployment. 

Infrastructure challenges also appear with simultaneous 

active users. Feedback efficiency gain in relation to the 

concurrent users is shown in Figure 11. The curve indicates 

that efficiency gain initially grows proportionally to scale. 

However, a point is eventually reached when infrastructural 

constraints, throttling of APIs, and sudden increases in 

latency would start lowering returns. 
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Fig. 11 Feedback Efficiency Gain vs Number of Concurrent Users 

As shown, this pattern demonstrates the deliberate 

architectural need sought after. Institutions need to 

accommodate not only the average load but also the peak 

usage during exam periods and deadlines for assignments. 

Risk mitigation strategies like feedback queueing, hybrid 

cloud implementation, and model caching can address the 

problem but require additional resources for refinement and 

sustained help. 

A last issue addresses the governance of cross platform 

integration concerning hierarchical feedback. Because 

feedback is sensitive to educational guidelines, institutions 

must create clear review, audit, and edit protocols pertaining 

to content LLMs produce. In the absence of an instructor- AI 

feedback loop, there is a potential danger of pedagogical 

drift—erosion of instructional quality over time. 

5.4 Socio-technical Considerations and Bias Risks 

Integrating LLMs in education brings forth socio-technical 

risks and ethical considerations that need special attention. 

LLMs are created using enormous datasets that are generally 

not curated, containing structural biases, inequities, and 

prevailing societal norms. Without implementation of active 

bias mitigation techniques, these datasets reproduce or 

reinforce biases. 

Some LLM-assigned roles or conversational contexts were 

identified during the experiment in which learners' cultural or 

intention-related contextualized scaffolds were incorrectly 

identified. Some pieces of feedback subtly endorsed western-

centric academic norms alienating learners from non-western 

indigenous traditions regarding arguments and expression. 

While these concerns were infrequent, they reveal a more 

troubling aspect of using sophisticated, general-purpose 

models in deeply-contextualized educational environments. 

In addition to content bias, the risk of AI reliance also exists. 

With effective feedback systems in place, there is a danger of 

instructors avoiding the feedback loop which stops 

engagement with content. This gives birth to a new risk as 

feedback may become repetitive, monotonous, or out of 

alignment with the course changes without human oversight. 

In addition, students may presume authority surrounding AI-

augmented feedback especially when it is polished, refined, 

or framed in formal syntax. 

Such systems raise additional privacy and data protection 

issues. Anonymized datasets governed with strict policy 

frameworks will be required. Access to learner submissions 

at scale may allow for supporting or personally identifiable 

information to be inadvertently disclosed. Sensitive 

information may also be disclosed. In compliance with legal 

frameworks such as GDPR, FERPA, and privacy laws, 

clearer data governance, anonymization protocols, and opt-

out options must be established. 

Finally, the use of LLMs L raises ethical considerations 

surrounding authorship, instructional agency, and the 

presence of a human educator. The divide between teaching 

and machine instruction begins to soften when machines 

administer emotional affirmation and critique. We should 

always try to control and be careful of technologies that 

substitute some elements of teaching that ought to be 

retained—the relational, empathetic, critical, and deeply 

human dimensions of teaching. These technologies should 

ideally be able to supplement, not replace, educators’ 

authentic interactions with students. 

VI. CONCLUSION 

6.1 Summary of Contributions 

This research examined the capabilities of LLMs, particularly 

GPT-3.5 and GPT-4, in augmenting feedback mechanisms 

within MOOCs. With systematic scrutiny spanning several 

disciplines and thousands of learner engagements, our studies 

showed that LLMs achieved remarkable feedback 

construction that was insightful and contextually relevant in 

relation to instructors’ expectations. 

In particular, GPT-4's feedback was rated highly with respect 

to BLEU and ROUGE scores as well as overall feedback 

from peers and instructors. In addition, GPT-based systems 

drastically outperformed the traditional NLP engines in 

speed, usefulness, and breadth of assessment. AI feedback 

resulted in learners becoming more motivated and satisfied 

with the tasks at hand, enhancing active participation with 

assignments. 

Improvements extended beyond the technical aspects too. 

The models demonstrated sophisticated personalization in 

tailoring responses considering the content, tone, and learner 

level which is impossible with rule-based feedback systems. 

In addition, the system seems to have the capability to 

provide equal coverage in feedback to members from 

different demographic groups, thus suggesting potential for 

deployment at scale for increased inclusivity. 

6.2 Practical Implications for MOOC Platforms 

These results directly affect the strategies of MOOC 

providers specifically in the areas of engagement and learner 

support. Conventional feedback systems based on instructor 
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or peer review are too slow, inconsistent, and unscalable. 

These are some of the gaps that LLMs can fill by providing 

feedback that is automated, timely, and responsive to 

individual learner requirements. 

For educators, this translates to less time spent on grading and 

more time spent mentoring learners or developing 

instructional materials. For the platforms, it translates to 

better learner retention and higher rates of course completion. 

LLMs can be incorporated into existing LMS frameworks via 

APIs, providing responsive feedback in real time across 

different content, subjects, and formats, professionally and 

timely. 

Cost is still a concern. The best performance comes from 

GPT-4, but its operational cost is steep. GPT-3.5 is a stronger 

middle option, balancing quality and efficiency. A blended 

approach can be adopted where Institutions save GPT-4 for 

more complex assignments requiring deeper insight and use 

lighter models for more straightforward tasks. 

Privacy and data protection policies must receive equal 

attention. Platforms must comply with data protection 

policies concerning learner identity feedback systems require 

submission due to giving structured feedback identity 

protection, anonymization, and audit trails policy regulation 

as well as implement obscured processes where identities are 

hidden and auditability policies ensuring that records can be 

checked are put in place. 

6.3 Recommendations for Adoption 

To mitigate social, ethical trust, and safety risks, the 

following best practices are suggested for integrating LLMs 

into the MOOC framework. First, implement gradual steps. 

For onboarding, use AI-provided feedback on formative 

assessments. This will help ease both learners and instructors 

into the system and build confidence. Expand scope to more 

critical tasks later. 

Second, delay full automation. Even the most modern of 

models require instructor approval for fault-sensitive issues 

or evaluations, as some topics need critical gaze attention. 

With instructor-in-the-loop models, quality control is 

preserved and system behaviour can be adjusted over time. 

Third, provide justification. Reporting should explain why 

learners did not receive personalized feedback, especially 

when an AI system is used. Learners must have the ability to 

contest erroneous or inconsistent feedback. Comprehensible 

systems offer accountability while autonomous systems uplift 

learners. 

Lastly, inclusivity must be deprioritized. Prioritize testing 

during refinement to keep bias out of the fine-tuning process. 

Test across demographics with divergent models. All levels 

of AI as an educational tool must be just, transparent, and 

equitable. 

To conclude, usage of LLMs opens up many opportunities on 

automating feedback features in MOOCs. These models can 

be leveraged to greatly improve learner experiences, enhance 

instructor support, and outcomes at scale educational 

outcomes when accompanied with appropriate ethical 

frameworks and technical infrastructure. 

VII. FUTURE WORK 

This research did demonstrate a promising use of Large 

Language Models towards automating feedback on MOOCs, 

however, multiple aspects still require attention in both 

research and development. One such aspect includes LLMs's 

feedback diversity and cultural adaptability. Subsequent 

versions of the LLMs should be trained on data encompassing 

a broader spectrum of subjects, languages, and learner 

demographics to make the feedback more relevant, 

contextually sensitive, and pedagogically appropriate. Also, 

LLMs's multilingual feedback generation capabilities need 

attention, particularly for learners situated in non-English 

speaking countries where performance is lacking. 

Furthermore, providing LLMs with the ability to respond 

more human-like by, for example, emotionally recognizing 

learners' encouragement or frustration could enhance make 

the responses appear more supportive. 

The use of LLMs in chat support services or AI assistants 

with MOOCs classes are other areas with great potential. 

Integrating feedback systems together with conversational 

agents would allow learners to actively engage in error 

correction and error reflection on a deeper level. Furthermore, 

exploring how LLMs can be incorporated into learning 

systems that not only provide feedback, but adapt the 

instruction content based on the performance of the learner, 

would be beneficial in future LLM research. For safe and 

sustainable use, however, addressing issues such as scaling 

up the infrastructure, lowering token costs, and using bias 

mitigation through reinforcement learning will be essential. 

Overall, with the advancement of LLMs, the scope of their 

application in intelligent tutoring systems and digital 

education will increase, which means that both educators and 

decision makers will need to work together with technology 

experts constantly. 
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