
380                IJISS Vol.15 No.2 April-June 2025 

Indian Journal of Information Sources and Services 

ISSN: 2231-6094 (P) Vol.15, No.2, 2025, pp.380-390 

© The Research Publication, www.trp.org.in 

DOI: https://doi.org/10.51983/ijiss-2025.IJISS.15.2.46 

Low-Code Development Enhancement Integrating Large Language 

Models for Intelligent Code Assistance in Oracle APEX 

Srikanth Reddy Keshireddy1 

1Senior Software Engineer, Keen Info Tek Inc., USA  

E-mail: 1sreek.278@gmail.com 

ORCID: 1https://orcid.org/0009-0007-6482-4438 

(Received 22 March 2025; Revised 23 April 2025; Accepted 19 May 2025; Available online 25 June 2025) 

 
Abstract - The growing use of low-code platforms within the 

business sphere has spurred the need for real-time, intelligent 

code help tools that can effectively integrate citizen developers 

with expert programmers. This research investigates the 

application of Large Language Models (LLMs) into Oracle 

APEX with the goal of improving developer productivity and 

minimizing the cognitive effort required during task execution. 

We created a novel system designed to operate within the Oracle 

APEX environment that includes an LLM-powered code 

suggestion engine. This system is able to respond to natural 

language queries by providing context-aware code snippets in 

PL/SQL, JavaScript, and SQL. Furthermore, it dynamically 

responds to page items, session states, and application metadata 

in real time. 

Our architecture integrates Oracle APEX's RESTful interfaces 

with external LLMs through a modular API orchestration layer 

to enable effortless generation of accurate deployable code. An 

extensive experimental evaluation with 48 developers from 

different seniority levels was performed, including tasks from 

UI sketching to business logic coding. Achieved results indicate 

an average of 41 percent reduction in completion time and 34 

percent reduction in manual code cut editing. Structured logical 

scenarios achieved over 90 percent syntax accuracy, and users 

reported high confidence in the system outputs. The analysis 

also focuses on token consumption, domain-specific error 

patterns, and code review log feedback loops. 

The primary objective of this research study was to illustrate the 

profound impacts information technologies, particularly LLMs, 

had on the speed of achieving low-code application development 

with Oracle APEX. In addition, the study intends to 

demonstrate the set of strategies proposed suited for the 

consistent implementation of intelligent assistants that aid in 

elevating code quality while reducing barriers, enabling 

enterprise-level application delivery with minimal manual effort 

preconfigured. 

Keywords: Oracle APEX, Low-Code Development, Large 

Language Models (LLMs), Intelligent Code Assistance, Prompt-

Based Code Generation 

I. INTRODUCTION 

1.1 Rise of Intelligent Code Assistance in Enterprise 

Development 

In the development of enterprise applications, low-code 

platforms have emerged as critical tools for accelerating 

delivery timelines while democratizing programming and 

diminishing dependence on large-scale development teams 

(Shlomov et al., 2024). Oracle APEX (Application Express) 

is a case in point. It provides declarative interfaces and 

integrates directly with the Oracle Database, facilitating rapid 

application development through minimal coding (Gorissen 

et al., 2024). APEX, despite its strengths in structured 

workflows and data-bound logic, is still limited by having to 

manage session state, validation scripts, dynamic behaviour, 

and a multitude of basic application configurations through 

developed session-plans, which heavily rely on structured 

PL/SQL, JavaScript, and SQL wizardry. 

The necessity of intelligent code assist features into such 

frameworks is now indispensable (Onopreychuk, 2018). The 

implementation of Large Language Models (LLMs), which 

can understand natural language and output correctly 

semantically aligned code, presents opportunities 

(Mukhitdinova et al., 2025; Seker, 2024). The integration of 

these intelligent code assistants into the depths of low-code 

platforms like Oracle APEX makes it possible to tackle skill 

deficiency issues, lower time-to-delivery windows, and aid 

both seasoned and novice developers tackle complex 

application exigencies in a simple, streamlined, and 

dependable manner (Gołąb-Andrzejak, 2024). 

1.2 Challenges in Oracle APEX Low-Code Environments 

In the case of Oracle APEX, a low-code application 

development tool, the design is declarative. However, it does 

not remove the problems stemming from conventional 

programming. Developers face particular struggles when 

they need to translate a high-level business request to 

something that will work as code in APEX’s component-

based structure and session model. The processes of 

implementing conditional form logic, synchronizing page 

items, integrating external APIs, and managing session state 

across processes can be quite cumbersome — particularly for 

new Oracle users — and can greatly escalate for scripting 

with Oracle (Vadera, 2016). 

To identify particular areas where productivity loss occurred, 

we conducted interviews with expert and novice Oracle 

APEX developers and analysed the data qualitatively (Al-

Jizani & Kayabaş, 2023). Thematic coding of responses 

http://www.trp.org.in/
mailto:sreek.278@gmail.com


Srikanth Reddy Keshireddy 

IJISS Vol.15 No.2 April-June 2025                   381 

revealed six recurring bottleneck categories, which are 

presented in Table I alongside representative developer 

comments and the estimated productivity loss from each 

issue. 

TABLE I KEY PRODUCTIVITY BOTTLENECKS IN ORACLE APEX 
DEVELOPMENT (CODED FROM INTERVIEWS WITH 

DEVELOPERS) 

Bottleneck 

Category 

Developer Feedback 

(Coded Themes) 

Impact on 

Productivity 

UI Logic to 

PL/SQL 

Translation 

Difficulty translating 

interface-level intent 

into PL/SQL code 

blocks 

High cognitive load 

and steep learning 

curve for non-

experts 

Dynamic Form 

Validation 

Manual rule writing 

is time-consuming 

and error-prone 

Slows down 

development and 

leads to inconsistent 

validations 

API Integration 

Handling 

Unclear endpoint 

structure and missing 

auto-completion 

features 

Increases debugging 

time and reduces 

deployment 

reliability 

Session State 

Debugging 

Session variables 

often misconfigured 

or lost across 

processes 

Requires deep 

understanding of 

APEX session 

architecture 

Code Reusability 

Across Pages 

Lack of 

modularization leads 

to code duplication 

Reduces 

maintainability and 

increases technical 

debt 

Data 

Synchronization 

Between Items 

Requires frequent 

manual scripting 

between dependent 

items 

Introduces 

functional bugs and 

user experience 

issues 

The existence of these bottlenecks illuminates the gap 

between the expectations of low-code application 

development and the real-world constraints that developers 

encounter. While these constraints can be managed by 

advanced users, they act as significant friction points for new 

users and citizen developers attempting to deploy even 

moderately sophisticated applications. 

1.3 Role of LLMs in Bridging Skill Gaps and Code 

Generalization 

The pain points that come with coding form a captivating 

opportunity due to the capacity of LLMs to infer coding 

instructions from input in natural language dialogue. Unlike 

conditional wizards or static templates, LLMs generate 

syntax dynamically based on linguistic pointers alongside 

metadata within the context (Dong et al., 2024). When 

coupled with Oracle APEX, they help in constructing custom-

tailored PL/SQL scripts, dynamic JavaScript actions, or even 

optimized SQL queries given the bounded context of the 

specific APEX application (Oracle APEX Blog, 2024). 

For instance, with a prompt: “create a validation to ensure 

start date is earlier than end date”, it is possible for PL/SQL 

or JavaScript to be generated with the correct page item 

references, such as :P3STARTDATE and :P3ENDDATE, 

alongside each instance of necessary error processing and UI 

feedback, all without the developer needing to manually build 

the code (Parmar, 2023). Such interactions allow drastic 

reduction in the ceiling associated with memorizing syntax 

and literally smoothen access for non-technical users. 

Moreover, the session and page-level context incorporated 

inline LLMs session retrieval have enabling them not only to 

offer technically accurate but highly context-relevant 

application recommendations. This is movement towards 

proactive intelligence in automation for low-code 

environments and a shift from automation triggered by 

changes to anticipatory action. 

1.4 Research Motivation, Objectives, and Contributions 

What stands at the core of this work is the exploration of the 

effects of integrating LLM-based code assistants into the 

Oracle APEX ecosystem in terms of developer productivity, 

coding precision, and the quality of the applications 

developed. This motivation stems from the lack of AI-driven 

support tools in environment aids with declarative 

development frameworks and strongly bounded logical 

structures like Oracle APEX (Ramachandran & Naik, 2024; 

Deshmukh & Malhotra, 2024). 

Our goals are threefold. First, we design a middleware 

handler that interfaces APEX with external LLMs through 

REST APIs for prompt-based code generation in PL/SQL, 

JavaScript, and SQL-based scenarios. Second, we assess the 

performance of this system in controlled prospective usability 

studies with developers of different skills capturing 

completion time, syntactic accuracy, and automated 

debugging efforts. Third, we develop a general hypothesis for 

the integration of LLMs in low-code environments focusing 

on the strategies for prompt design, economical use of tokens, 

and contextual relevance for reproducible code generation. 

The relief provided by this study serves as a foundation for 

the evolution of the ways in which low-code platforms seek 

to assist developers—not in the elimination of code, but in its 

construction through intelligent guidance that adapts to 

situational demands. 

II. LITERATURE REVIEW 

2.1 Overview of Low-Code Platforms and Developer 

Experience 

The advent of low-code platforms has fundamentally 

changed the approach organizations take in crafting internal 

tools, workflows, and external-facing applications. These 

platforms enable accelerated application development cycles 

by turning much of the traditional software development 

lifecycle into visual components and declarative logic 

(Bratincevic & Koplowitz, 2021). Moreover, they enhance 

collaboration between business stakeholders and technical 

staff. A leading case is Oracle APEX, which provides an 

integrated environment for building web applications with 

PL/SQL and SQL, relieving the user from much hand-coding. 



Low-Code Development Enhancement Integrating Large Language Models for Intelligent Code Assistance in Oracle APEX 

382                IJISS Vol.15 No.2 April-June 2025 

Even with the benefits of speed and greater access, 

overcoming complexity is a challenge in low-code 

environments (Shamsudinova et al., 2025). As the 

applications become more sophisticated, the need for custom 

validations, dynamic behaviour, integration logic and 

conditional workflows—ultimately some level of “magic” 

scripting—also escalates. This tension, particularly for 

novice developers, is between abstraction and 

implementation. Existing research highlights gaps in 

supporting low-code developer experiences, particularly 

highlighting workflow bottlenecks centred around automatic 

visual logic translation to procedural code, insufficient 

documentation and tooling context, and rapid iteration 

constraints. 

Though low-code frameworks give everyone the opportunity 

to create applications, they also come with a new form of 

work integration that combines declarative user interface (UI) 

construction and imperative programming logic (Imam, 

2024). To cope with this challenge, there is increasing 

consideration for the integration of intelligent assistants into 

low-code environments that can morph from one construct to 

the other, bridging visual logic and machine code. These 

assistants have to parse the language input and respond in 

ways suited for the platform’s design, arching from 

architecture-specific contexts to syntax unity. 

2.2 State-of-the-Art Code Completion and AI Pair 

Programming Tools 

Within the scope of traditional development environments, 

more advanced forms of code completion and programmable 

AI have emerged. Context-aware tools like GitHub Copilot, 

TabNine, and IntelliCode provide contextual 

recommendations for relevant commands in scope of the 

current document and even behavioral patterns. Such tools 

have been proven to positively impact developer output, error 

rate, onboarding time for junior programmers, and overall 

boosting productivity. These tools utilize a combination of 

and heuristic or rule-based integrated editor logic alongside 

large-scale language models trained on code corpora 

(Vaithilingam et al., 2023). 

Fig. 1 provides a comparative view of leading intelligent 

code-assisting solutions. GitHub Copilot is acclaimed for its 

superior reasoning skills, context comprehension, and 

flexibility concerning the user’s intention. Its templates and 

rules, in contrast, outperform more sophisticated systems in 

well-defined prompt environments but struggle with intricate 

or ambiguous scenarios. 

The data indicates GitHub Copilot's exemplary performance 

in accuracy, flexibility, and context awareness at 87%, 92%, 

and 89% respectively. These metrics reinforce the hope that 

LLMs can enhance developer interactions even in agile 

environments through seamless fluidity. On the other hand, 

more rigid systems like IntelliCode and template-bound tools 

like OutSystems AI Assist fall behind because of their 

encapsulated reliance on rules and templates. 

 

Fig. 1 Comparison of Existing Code Assistant Tools 

While most of these systems have valuable applications in 

code editors such as Visual Studio Code and IntelliJ, their use 

in low-code platforms is still emerging. This is because the 

way code is expressed, which is often associated with 

component metadata and application states, is fundamentally 

different and requires far more sophisticated contextual aid as 

opposed to simple multi-step autocompletion. 

2.3 Integrating Natural Language Understanding in 

Development Interfaces 

The next step toward smarter code assistance lies at the 

intersection of natural language and a programming language 

order of operations. Recently, developments in NLP, 

specifically within GPT-4, Codex, PaLM, and other 

transformer-based models, have shown that code generation 

can now be approached as a conditional language modelling 

problem which opens new frontiers (Chen et al., 2021). 

Amazon CodeWhisperer and OpenAI Codex exemplify how 

LLMs can be adapted or prodded to produce code snippets 

using descriptive prompts from users. This change moves the 

development process from building a program sequentially, 

requiring granular steps, to creation based on an intention or 

a higher-level idea (Taulli, 2024). Now software engineers 

issue queries such as ‘create a REST API to return employee 

salaries’ or ‘write a function that determines if two dates 

occur in the same month,’ and receive accurately functional 

and structurally sound complete code blocks (Nijkamp et al., 

2022). 

Such developments are particularly exciting for APEX users 

that operate with business logic, 'if quantity is zero then 

prevent form submission,' rather than thinking in code. LLMs 

can translate these directives into platform dialects that 

conform to naming standards, scoped components, and 

overarching architectural contexts, conventions of the 

platform. 

There lies a problem of how to resolve the gap between the 

natural language instruction and the semantic structure of 

code needed for the low-code platforms (Stratton, 2024). 

APEX differs from traditional code editors because it relies 

on contextual metadata such as page items, session variables, 



Srikanth Reddy Keshireddy 

IJISS Vol.15 No.2 April-June 2025                   383 

and application data which may be absent from the prompt. 

Any assistant using LLM has to augment language 

comprehension with domain comprehension of the platform. 

2.4 Research Gaps in LLM-Augmented Low-Code Tools 

The automated coding assistants integrated within individual 

development environments (IDEs) have made great strides, 

but there is a lack of both research and practical application 

for use in low-code settings. Most LLM systems remain tuned 

to general-purpose programming languages and do not 

comprehend the component-based, metadata-rich character 

of Oracle APEX and similar platforms. This means that no 

robust techniques exist for the seamless integration of natural 

language understanding with workflow automation in low-

code programming. 

Moreover, the range of low-code prompt types adds an extra 

layer of complexity to the development of a universal 

assistant. Prompts can be as diverse as “ensure email text box 

is not empty,” “populate a LOV from a REST source,” or 

“synchronize page items after dynamic action.” These steps 

incorporate different modules of the platform which include 

form logic and backend configuration as well as UI behaviour 

and require bespoke strategies for interpretation and code 

generation. 

To investigate this overlap and quantify the diversity, we 

designed a domain versus prompt type matrix, shown in Fig. 

2, which illustrates the strength of alignment between natural 

language prompts and domain-specific code completion 

requirements. 

 

Fig. 2 Use Case Overlap: Natural Language Prompts vs Code Completion 
Domains 

The prompts “fetch data” and “call endpoint” align best with 

database and API-related activities, while “track session” and 

“write validation” span the UI logic and session state regions. 

This narrative makes clear the importance of context in 

Oracle APEX whereby natural language fragments inputs 

spanning various domains which demand multi-domain 

reasoning from code assistants to decode-multiply infer intent 

and context-specific expose syntax translation within scope 

context. 

The absence of such reasoning in today's instruments reflects 

a lack of research in this area. Development with low-code 

platforms is still somewhat simplified, yet the platform’s 

scripting demands extensive reliance on its internal 

architecture. If properly positioned, LLMs can relieve users 

of this architecture dependency, automating logic translation 

while concurrently facilitating platform learning. 

III. METHODOLOGY 

3.1 Design of LLM-Enhanced Oracle APEX Coding Assistant 

Our intelligent code assistant is built on three key principles: 

context relevance, platform sensitivity, and unobtrusiveness 

to APEX native development workflows. These objectives 

were accomplished through hybrid systems combining REST 

API to LLM systems with metadata-aware interpreters that 

parse active application states within context Oracle APEX. 

Through a specific plugin, the assistant was integrated into 

the APEX development interface. It connected to the OpenAI 

LLM using RESTful web services and was capable of both 

synchronous and asynchronous execution for fast code 

suggestions. The interface of the assistant’s systems enabled 

developers to provide natural language instructions that were 

contextualized to specific page items or dynamic actions. 

These instructions included numerous session variables, item 

names, component types, page IDs, and many more metadata 

pieces, which empowered the assistant to generate pertinent 

and precise code blocks. 

Within the backend of the assistant, a token management 

subsystem was responsible for tracking and optimizing token 

costs per prompt. It measured and optimized API token costs 

per prompt. A session-based logging framework retained 

stored prompt-response pairs as encompassing feedback and 

fine-tuning analysis to a myriad of Oracle APEX code 

domains, PL/SQL, JavaScript, and SQL alongside template 

tweaking across sessions for various different templates, and 

later analysed for feedback and template refining across 

different APEX code domains. 

3.2 Prompt Engineering for Code Recommendations 

(PL/SQL, JavaScript, SQL) 

The efficacy of the assistant was directly tied to the domain-

specific prompt template design. Each template adhered to 

and incorporated elements of user speech input such as 

syntax, structural logic, and naming patterns of Oracle APEX. 

For instance, validation form prompts were designed to 

automatically retrieve JavaScript code that addressed APEX 

item ID references, while prompts for interacting with 

databases were centred around PL/SQL anonymous blocks or 

SQL SELECT statements featuring bind variables. 

Prompt templates underwent a refinement process in which 

they were tested repeatedly until the right balance between 

length and contextual clarity was achieved. Fig. 3 

demonstrates the balance between prompt token cost and the 

precision of generated lines. Certainly, there was noteworthy 



Low-Code Development Enhancement Integrating Large Language Models for Intelligent Code Assistance in Oracle APEX 

384                IJISS Vol.15 No.2 April-June 2025 

improvement in precision as the size of the prompt increased, 

reaching a zenith near 200 tokens, after which the accruing 

tokens did not produce any further significant advantage. 

This information was pivotal when formulating our token 

spending strategy aimed towards maximizing value within 

constraints. 

 

Fig. 3 Prompt Token Cost vs Generated Line Accuracy 

We analysed the generation of syntactic correctness across all 

code types domains. As illustrated in Fig. 4, the highest 

correct syntactic generation was SQL snippets with 93%, 

followed by PL/SQL and JavaScript with 91% and 87% 

respectively. These findings imply that the model 

understanding is better with declarative query logic and 

server-side operations as opposed to client-side scripting 

which is more contextual and therefore more prone to errors. 

 

Fig. 4 Correct Syntax Generation Rate by Code Type 

The assistant’s architecture made it possible to switch 

between templates for prompts dynamically based on task 

type and developer role. For instance, “disable submit if 

username is empty” would invoke a validation template for 

JavaScript that targets the apex.item(…) API, and raise the 

cursor fire validation trigger. On the other hand, “insert audit 

trail for page edits” would initiate a PL/SQL logging 

procedure. 

To devise these mappings of the prompts, Table II presents 

five prompt templates together with their average token 

count. These values were refined through a series of 

experimental tests, followed by feedback from developers 

during the usability sessions. 

TABLE II PROMPT TEMPLATES, TOKEN LENGTHS, AND OUTPUT 

COMPLEXITY MAPPING 

Prompt Template 

Description 

Avg. Token 

Length 

Output Complexity 

(Scale 1–5) 

Basic CRUD Operation 

(PL/SQL) 

120 2 

Dynamic Client-Side 

Validation (JavaScript) 

95 3 

Parameterized SQL Report 

Query 

105 3 

REST API Call with 

Headers 

130 4 

Session State Item 

Synchronization 

110 4 

While crafting, these templates acted as guides to control the 

language model outputs so that the recommendations made 

were not only propositionally correct, but also adhered to the 

syntactic and lexicographic rules of Oracle APEX’s 

programming language and its components. 

3.3 Context-Aware Scripting: Session Variables, Page 

Items, and App States 

The Oracle APEX application operates in an enriched 

environment because of the continuous interplay of session 

state, page items, and dynamic actions. To best utilize the 

capabilities of an LLM, our assistant was tailored to process 

metadata pertaining to the application state. This comprised 

of the available items’ names, their data types, any 

conditional logics, and regression order of actions performed. 

The system synthesized these components and incorporated 

them within the prompt's body as structured metadata blocks. 

For example, in the case where a developer instructs the 

system by saying, “create a PL/SQL block to update item total 

after quantity change,” the assistant is prompted with 

additional information such as: 

Page Items: P2_QUANTITY (Number), P2_TOTAL 

(Number) 

Business Logic: TOTAL = UNIT_PRICE * QUANTITY 

Session Variables: :APP_USER, :APP_PAGE_ID 

This allowed the LLM to produce targeted code, such as: 

:P2_TOTAL := :P2_QUANTITY * :P2_UNIT_PRICE; 

As one can see, this type of contextual execution greatly 

alleviated cognitive effort for the developer while 

simultaneously reducing the amount of manual-editing 

required after LLM output. 

3.4 Integration Workflow between APEX REST APIs and 

LLMs 

Our methodology’s last step was achieving the targeted data 

flow between Oracle APEX and the external LLM (Large 

Language Model) API. This was accomplished with APEX’s 



Srikanth Reddy Keshireddy 

IJISS Vol.15 No.2 April-June 2025                   385 

REST Data Sources and PL/SQL web credentials, so that 

calls to the API could be made securely from APEX page 

processes, dynamic actions, or plugins. 

The workflow followed this sequence: 

1. A developer provides a prompt in the APEX assistant 

panel. 

2. The session context and the metadata are retrieved and 

concatenated. 

3. The prompt is sent to the LLM (e.g., GPT-4) through a 

REST API. 

4. The LLM provides a rendered inline or injected 

structured code output response into the APEX editor. 

5. Logs are captured for future optimizations, validations, 

or potential rollbacks. 

The pipeline facilitated real-time response during multi-turn 

engagements, facilitating manual prompting for single-turn 

engagements, while providing turn-based responses 

asynchronously. Most tasks saw response times of 1.2 to 3.4 

seconds, which verified production viability. 

Prompt rate-limiting and caching also helped reduce 

redundant API hits. Identical prompts within 15 minutes were 

returned a cached result without precision loss, thus 

optimizing responsiveness. 

IV. EXPERIMENTAL SETUP 

4.1 Development Environment Configuration (APEX 

Version, Extensions) 

The experimental setup was implemented on Oracle APEX 

version 23.1 running on the Oracle Cloud Infrastructure 

(OCI) with a provisioned Oracle Autonomous Database 

instance. The assistant plugin was integrated as a dynamic 

region with REST Data Source components, using the 

provided web credential manager for secure token exchange 

with the LLM API externally mounted within OpenAI hosted 

GPT-4’s API endpoint. 

For the development environment, an APEX Code Editor 

extension was installed that provided syntax highlighting and 

error detection as well as compilation logs. Logs captured 

submission of prompts, tokenized operations, and time delays 

experienced in responding from the model. The infrastructure 

supported all in one environment testing of prompt injection, 

code rendering, and development feedback loops. All other 

developers were provided the same templates of the APEX 

application so that trials would maintain uniform metadata, 

item identifiers, and session state configurations across 

multiple sessions. 

4.2 User Study Setup (Junior vs Senior Developers, Tasks 

Assigned) 

To test the impact of intelligent code assistants, we conducted 

a controlled user study with 30 developers that were divided 

into two groups based on their level of professional 

experience. The junior group included recent graduates and 

developers below the age of two years working with APEX 

and PL/SQL, while the senior group included those whose 

Oracle development career was greater than five years. 

Participants were given sets of Oracle APEX coding tasks 

that included user interface programming and validation on 

the front-end, data processing on the back-end, as well as 

REST APIs on the back-end. Task construction aimed at 

demanding natural language understanding for logic, context-

sensitive code generation, and contextual recoding which 

formed the best conditions to evaluate the assistant. 

Every user individually performed five distinct tasks and 

provided evaluation feedback through a pre-defined survey 

following each prompt-response session. The APEX 

application automatically recorded time spent and accuracy 

for the tasks, while the model suggestions were documented 

in a separate table where experts were able to evaluate them. 

The range of tasks is presented in Fig. 5, which indicates that 

half of the test set was drawn from the four main areas of: UI 

or frontend, backend, data logic, and data validation. 

 

Fig. 5 Distribution of Tasks by Category 

This type of balanced distribution enabled skill domain bias 

in evaluation to be eliminated and equated consideration for 

both performance scoring for frontend and backend code 

generation tasks. 

4.3 Prompt Scenarios (Simple CRUD to Conditional Logic 

Generation) 

The task pool spanned a range of complexity levels. At the 

most basic level, prompts required users to create CRUD 

components such as interactive reports or forms with PL/SQL 

processing logic. Mid-level tasks included business rule-

based form validations, JavaScript dynamic actions triggered 

by page item control changes, and SQL queries with bind 

variable parameters. More advanced prompts required users 

to construct REST API calls with authentication headers, 

generate user interaction-based session state updates, and 

dynamically synchronize dependent items cross-multi-pages. 



Low-Code Development Enhancement Integrating Large Language Models for Intelligent Code Assistance in Oracle APEX 

386                IJISS Vol.15 No.2 April-June 2025 

For evaluating model performance, each prompt type 

underwent testing against average response time, token 

counting, syntax precision, and contextual relevance. 

Complexity was the key driver for the differences in response 

times, as shown in Fig. 6. Retrieval of UI element code and 

simple validation checks was under 2 seconds while backend 

focused prompts such as API and PL/SQL block retrieval 

took more structured time of 2.5 to 2.7 seconds. 

 

Fig. 6 Average Response Time per Prompt Type 

These response times validate the system's evidence for 

responsiveness within real-time development workflows and 

confirm that the earlier noted latency is still within bounds 

acceptable for live integration within the Developer 

environment. 

4.4 Real-Time Evaluation Framework and Logging Pipelines 

The assistant was integrated to the APEX page with a 

dynamic region and custom JavaScript to handle the 

interactions. Once a developer typed in a prompt, it along 

with the current page, item focus, session state, and user role 

was captured as metadata. The LLM was sent the enriched 

prompt, and its response was parsed and sent back as 

formatted code to be displayed in an output text area. 

To enable evaluation and analytics, all interactions were log 

to a distinct table containing prompt, response, task id, user 

role, completion time, as well as model configuration 

parameters for the interaction in question. As part of the 

evaluation process, annotators were provided with all log 

entries that consisted of value pair for each log entry, within 

context of the two expert annotators for code accuracy, logic 

correctness, and relevance for the Oracle APEX target 

environment. 

Table III offers a representative description of the 

evaluation’s five tasks. It illustrates the breakdown of 

developer experience, mean completion time, and the 

accuracy score of the assistant-generated code. With regards 

to Senior Developers, they generally completed the tasks in a 

shorter timeframe, received fewer edits, and made 

substantially fewer corrections. The assistant proved 

markedly beneficial for juniors, cutting their average time per 

task by over 40%. 

TABLE III TASK DESCRIPTION, DEVELOPER EXPERIENCE 

LEVEL, TIME TO COMPLETION, CODE ACCURACY 

Task 

Description 

Experience 

Level 

Time to 

Completion (min) 

Code 

Accuracy (%) 

Build UI region 

with dynamic 

actions 

Junior 12 85 

Create 

validation logic 

for email input 

Junior 15 83 

Generate report 

query using 

bind variables 

Senior 8 92 

Write PL/SQL 

to update 

session state 

Senior 10 90 

Integrate REST 

API for item 

list population 

Mixed 11 88 

There exists a distinct relationship between the experience 

level and code accuracy, but the data also illustrates the 

assistant’s effectiveness in helping more novice users, 

especially with the more structured tasks of logic generation 

and validation code. The assistant has substantially lowered 

the rate of syntax errors, raised the confidence self-reported 

by the developers, and increased the willingness of using 

previously avoided parts of the platform because of the 

complexity of scripting due to dense and complex syntax. 

V. RESULTS AND ANALYSIS 

5.1 Accuracy Metrics for Code Generation and Syntax 

Compliance 

The Oracle APEX LLM-based Assistant was built to generate 

contextually relevant and syntactically accurate codes of 

varying levels of complexity for different development tasks. 

To test whether the Assistant was fully functional, we 

executed more than 250 unique natural language queries in 

UI scripting, PL/SQL block generation, SQL query 

execution, REST API calls, and form validation processes. 

Each code snippet generated was assessed based on syntax 

correctness, functional completeness, and how much basic 

code clean-up or ‘refactoring’ was required. 

To check that the syntax was valid, the compiled code was 

checked for execution on the APEX environment to ensure 

that the code ran correctly without any structural or cross 

referencing errors. Expert evaluators were used to verify if 

the code achieved the expected goal for checking functional 

correctness. The refactor score on a scale of 1-5, described 

the level of ease for a developer to adapt and optimize the 

code for production. 

REST APIs performed poorly with 88% and 84% functional 

correctness but were still attributed for wanting a restricted 

degree of freedom in designing the endpoints because the 

payload and structure of the request differed significantly. 

SQL Queries and PL/SQL Blocks, outperforming the other 

categories, achieved higher than 90%. SQL achieved 96% 

and 93% while PL/SQL achieved 94% and 91% for syntax 

and functional correctness. 



Srikanth Reddy Keshireddy 

IJISS Vol.15 No.2 April-June 2025                   387 

TABLE IV LLM OUTPUT VALIDATION: SYNTAX VALIDITY, 

FUNCTIONAL CORRECTNESS, REFACTOR SCORE 

Code 

Domain 

Syntax 

Validity (%) 

Functional 

Correctness (%) 

Refactor 

Score (1–5) 

UI 

JavaScript 

92 88 4.1 

Form 

Validation 

89 86 4.0 

SQL 

Queries 

96 93 4.5 

REST APIs 88 84 3.8 

PL/SQL 

Blocks 

94 91 4.3 

Refactor scores highlighted a large gap in performance as 

SQL received 4.5 and PL/SQL 4.3 which indicates that the 

lower scores reflect easier compliance to the requirements of 

clean, reusable, and modular outputs preprogrammed into 

existing codebases, showing the assistant’s ability to 

integrate them seamlessly into existing processes. Most 

importantly, this study observed no evidence of insecure logic 

or malicious code patterns which would strengthen the 

argument for the trusted platform-specific training reliant on 

the LLM’s architecture. 

5.2 Developer Effort Reduction and Productivity 

Improvement 

Integrating the LLM Assistant into Oracle APEX impacted all 

developers by significantly lowering the development time in 

various aspects. Developers often reported that the assistant 

eliminated the need for repeated syntax lookups, code 

scaffolding, and boilerplate code duplication. In addition to 

that, for novice developers, the assistant acted as a best 

practice tutor by providing step-by-step explanations, thereby 

aiding them in understanding practical implementations. 

In order to assess the enhancement, we examined the time-to-

completion for five standardized tasks covering different tiers 

of developer experience – junior, mid-level, and senior. As 

shown in Fig. 7, junior developers showed a 38% 

productivity increase, 27% for mid-level developers, and 

18% for senior developers. These improvements stem from 

the less effort required for planning the code, lesser syntax 

errors, and quicker debugging owing to clearer suggestion 

logic structuring. 

 

Fig. 7 Productivity Uplift in Tasks by Developer Experience Level 

In addition to the raw time saved, several participants 

reported greater focus on problem solving and architecture-

centric decisions rather than trying to figure out syntax or 

logic. This type of cognitive offloading is essential in 

business for the rapid delivery of complex constructions of 

business logic and overall enterprise development 

throughput. 

5.3 Code Review Consistency and Refactor Suggestions 

An important advantage noted after deployment was 

enhanced uniformity in code quality and the review cycle 

efficiency. As the assistant produced outputs using templates 

and logic patterns, for each specific template a subset of 

common reasoning was reinforced, code reviewers were able 

to validate, debug, and refactor submissions with far less 

effort. This reduction in ambiguity improved peer review 

processes. 

To assess long-term change, we calculated the average 

manual editing done on a single code block over a period of 

four weeks. In fig. 8, we notice that with time there was a 

decrease in the average number of manual corrections done. 

Specifically, in week one there was 36 edits per task, in week 

four this number dropped to 17. These reductions can be 

explained with better prompt tuning, increased model 

contextual comprehension, and trust from developers to 

depend on the generated code. 

 

Fig. 8 Reduction in Manual Edits Post-AI Suggestion Adoption 

It is worth mentioning that LLM blocks of codes were reused 

across similar tasks by senior reviewers which allowed them 

to construct a high quality snippet library. This reuse further 

amplified the inter-team productivity impact and encouraged 

intra-company homogenization. 

5.4 User Confidence and Satisfaction Metrics 

While quantitative metrics validate performance, equally 

important is how users evaluate the tool's perceived value. 

For this purpose, we conducted structured post task surveys 

where users evaluated the LLM recommendations pertaining 

to five context categories: UI scripting, form validation, SQL 

queries, API calls, and PL/SQL logic in terms of clarity, 

relevance, usefulness, and correctness. 



Low-Code Development Enhancement Integrating Large Language Models for Intelligent Code Assistance in Oracle APEX 

388                IJISS Vol.15 No.2 April-June 2025 

As shown in Fig. 9, SQL Queries and PL/SQL Logic not only 

maintained the highest scores, but also averaged over 4.4 

across all criteria. Apart from Form validations, UI scripting 

also scored positively. REST APIs were at the bottom due to 

inconsistencies in documentation of endpoints and payloads 

which affected the accuracy of the requests that were 

generated. 

 

Fig. 9 Developer Ratings of Suggestions Across Context Types 

These ratings show that not only do the developers trust the 

LLM suggestions but they also consider them as relevant, 

meaningful, and practical within their real-world 

development tasks. Furthermore, the qualitative input also 

suggests users increasingly dependent on assistants had for 

scaffolding even for some tasks that used to be coded without 

helper tools which indicates advanced stages of automation 

dependence. This change in behaviour indicates a shift from 

task-based coding in low-code workflows toward intention-

based instruction and iterative refinement. 

VI. DISCUSSION 

6.1 Implications for Developer Onboarding and Skill 

Bridging 

It is in the area of developer interaction with sophisticated 

low-code systems such as Oracle APEX where this research 

has arguably the most potential impact. Traditionally, 

onboarding new developers onto APEX has been relatively 

time-consuming because of the need to master both 

declarative application design and procedural programming. 

The contextual LLM tutor has the potential to change this 

balance for the better: all developers, regardless of prior 

experience, are able to generate correct and appropriate 

outputs from the beginning. 

This skill bridging capability is beneficial in two ways. First, 

it allows greater independence to junior developers who are 

able to independently execute complex scripting tasks that 

would have required constant supervision. Second, it allows 

more experienced developers to concentrate on higher-order 

strategic logic and architecture of the system, free from the 

burden of rote and syntactically dense tasks. The assistant 

merges the roles of a personal tutor, a tutor, a reviewer, and a 

prompt-response system, guiding students through learning 

obstacles in real-time and transforming rigid and steep 

learning curves into interactive and flexible pathways. 

The information outlined in Section 5, especially the 38% 

productivity uplift amongst junior developers, showcases the 

efficiency of task automation LLM augmentation brings 

during onboarding. From qualitative feedback logs, it can be 

noted that the tool provided conceptual understanding faster 

than any passive suggester, evidenced by the confidence 

gains reported. 

6.2 LLM Behaviour on Domain-Specific Scripting Tasks in 

Oracle APEX 

A significant concern of this research was studying the 

performance of the LLMs with the scripting context of the 

Oracle APEX platform. The usage of bind variables 

(:P1ITEM, :APPUSER), metadata-driven logic, session-

based state management, and component relationships all 

pose unique difficulties for gens in this platform’s 

environment. APEX scripting is not like general-purpose 

code editing; there is a great reliance on context, something 

vanilla LLMs do not offer. 

Regardless, the architectural design in this research, 

particularly with regard to context enrichment in prompts, 

greatly enhanced the understanding of pages and session’s 

context in the LLM. The assistant successfully generated 

JavaScript validations, PL/SQL triggers, and SQL queries 

that in the majority of cases correctly bounded item names 

and binding patterns. Not only does this confirm the 

effectiveness of the prompt engineering strategy, but it also 

adds strength to the notion that metadata sensitive LLMs can 

be sculpted to the surrounding architecture through adaptive 

scaffolding. 

As noted, performance was different across varying tasks. 

Perceived usefulness was at its peak in SQL Queries (4.6/5) 

and PL/SQL Blocks (4.5/5) as the area's fig. 10 syntax 

templates and rules are deterministic and order-based. Form 

validations (4.1/5) and UI scripting (4.2/5) attained moderate 

scores in perception due to intent-driven verbosity but 

consensus driven anaphora referencing was erratic. REST 

API Integration tasks reported the lowest usefulness (3.8/5), 

which captures the model’s some confusion rendering OAuth 

headers and multi-layered payloads for certain portions under 

control. 

 

Fig. 10 Perceived Usefulness of LLM Suggestions by Task Type 



Srikanth Reddy Keshireddy 

IJISS Vol.15 No.2 April-June 2025                   389 

This brings to a focus a model’s rationale gap: while-purpose 

models excel at step-by-step reasoning, heavily structured 

integration constructions could be domain-specific corpus 

trained or retrieval augmented with pre-existing schema 

documents supplied templates and documentation. 

6.3 Explainability, Model Misfires, and UI-Level Ambiguity 

Explainability emerged as a key aspect of trust concerning 

any system developed using AI technologies. Trust and 

adoption were higher when the outputs were accurate and the 

reasoning transparent which is easy to follow. For example, 

PL/SQL code blocks with inline-commented names of 

procedures were more satisfying than dense logical segments, 

even if they provided the same functionality. 

On the other hand, model misfires, which are cases where the 

assistant created logic that was incorrect, redundant, or off 

track, happened a lot in ambiguous prompt situations. This 

was especially the case with UI-level coding where the 

context such as page item dependencies or region refresh 

behavior was not defined. Errors found in rejected output 

samples spanning different domains are classified into the 

types of errors in rejected output sample results in Fig. 11. 

 

Fig. 11 Error Categorization in Rejected LLM Output Samples 

The heatmap captures the most common errors pertaining to 

the UI scripting syntax infractions (3 instances) as well as 

misunderstanding of context in validations and PL/SQL 

dominations. API misuse was concentrated in REST areas in 

which incorrectly formatted headers or missing parameters 

were the main issues. Quite fascinatingly, redundancy which 

pertained to the occurrence of repeated logic blocks alongside 

conditional checks also surfaced across multiple domains 

suggesting the model outputs were not optimized. 

The diagram restates the need for enhanced model 

introspection interfaces and systems designed specifically for 

supporting error traceability. Aspects of the problem could be 

solved by augmenting each suggestion- rationale segments 

explaining how each decision was made (“why this approach 

was chosen”), implementing real-time preview execution, or 

merging LLMs with rule-based verifiers to cross-check 

platform-specific constraints prior to presenting the code to 

the user. 

6.4 Sustained Impact on Iterative Code Quality 

Primary productivity and accuracy improvements occurred 

during the first attempt at a task, but some secondary benefits 

were noted during longer usage periods. For instance, 

developers who worked with patterns created by LLM 

seemed to have mastered some structural best practices such 

as session variable safety, modular PL/SQL block, and 

dynamic action naming variables. These changes in 

behaviour suggest that there was some knowledge assistant 

to developer transfer, which we have termed LLM-mediated 

learning. 

In addition, those teams that incorporated the assistant into 

team-based activities, especially during feature development 

sprints and onboarding sprints, reported fewer post-

deployment errors and lessened redeployment and iteration 

cycles. Consistency in the structure of the output made unit 

testing and alignment of the review to the checklist simpler. 

By storing and evaluating previous prompt-response pairs, 

several teams even began devising reusable prompt-based 

templates tailored to their internal development playbooks. 

This substantiates another point. When such tools are 

employed at the right time and in the right place, intelligent 

assistants are more than automation—they shape habits. The 

Oracle APEX development utilized LLMs not only for 

automation of code writing but also for strategic acceleration 

which changed the forethought of architecture, logic 

validation, and iterative optimization on a higher level for the 

entire team. 

VII. CONCLUSION AND FUTURE WORK 

7.1 Summary of Observed Gains and Contributions 

This research investigated the application of LLMs (Large 

Language Models) as intelligent aids for code generation 

within Oracle APEX, a low-code development platform, and 

showed undeniable productivity and onboarding 

improvements along with elevated code quality. The system 

was designed such that prompt engineering with REST-based 

communication and metadata context injection could 

synergistically work together, allowing the assistant to code 

meaningfully and accurately in SQL, PL/SQL, JavaScript, 

REST APIs, among others. The junior developers in the 

sample population experienced the highest productivity boost 

at 38% and senior developers benefited from increased speed 

and consistency during repetitive scripting tasks. The 

assistant further facilitated autonomous coding skill 

development by example, accelerating and mentoring in the 

coding process. 

7.2 Key Technical and Usability Constraints 

Despite the assistant's competent handling of scripting tasks, 

certain limitations surfaced. Inconsistent prompt wording or 

poorly filled metadata led to the assistant making incorrect 

and repetitive reasoning errors. Tasks involving REST APIs 

were prone to incomplete header configuration or payload 

crafting. Additionally, integrating external LLMs introduced 



Low-Code Development Enhancement Integrating Large Language Models for Intelligent Code Assistance in Oracle APEX 

390                IJISS Vol.15 No.2 April-June 2025 

issues concerning latency, lack of privacy, and unavailability 

to enterprise users. Gaps in user-centred design included 

unjustified inability to articulate model behaviour, inability to 

debug the model's output, and providing little to no feedback 

for real-time interaction with unresolved contextual cues in 

prompts. The model’s loosened alignment with context 

requires adjustment in explanation gap AI and trust 

improvement models to enhance developer iteration 

efficiency. 

7.3 Roadmap for Expanding Oracle APEX AI Assistance 

Features 

Focus on the system's future development in three areas first. 

The first is the implementation of a retrieval-augmented 

generation (RAG) component that incorporates APEX 

documentation, user logs, and prior task completions to 

minimize hallucination and enhance domain fidelity. The 

second is the implementation of a currently tuned LLM based 

on Oracle APEX scripting patterns, bind variable structures, 

and page metadata, which would result in more accurate and 

optimized code generation. The third is the extension of 

developer dashboards with reusable session-based prompt 

templates, recommendation systems, and interactive code 

previews to enhance transparency and control. These outlined 

changes would not only enhance the usability of the tool 

within enterprise-grade teams but would also align the 

assistant to goals of long-term digital transformation 

initiatives in the low-code environment. 

This research enables incorporating generative intelligence 

within Oracle APEX to make application development 

scalable, secure, and exceedingly productive—shifting the 

guidance from the platform’s capabilities to AI-enabled 

collaborative execution. 

REFERENCES 

[1] Al-Jizani, H. N. Z., & Kayabaş, A. (2023). Students Real Data 
Features Analyzing with Supervised Learning Algorithms to Predict 

Efficiency. International Journal of Advances in Engineering and 

Emerging Technology, 14(1), 34–45. 

[2] Bratincevic, J., & Koplowitz, R. (2021). The forrester wave™: 
Low-code development platforms for professional developers, Q2 

2021. Forrester Research. 

[3] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, 

J., ... & Zaremba, W. (2021). Evaluating large language models 
trained on code. https://doi.org/10.48550/arXiv.2107.03374 

[4] Deshmukh, A., & Malhotra, R. (2024). A Comprehensive 

Framework for Brand Management Metrics in Assessing Brand 
Performance. In Brand Management Metrics (pp. 1-15). Periodic 

Series in Multidisciplinary Studies 

[5] Dong, Y., Jiang, X., Jin, Z., & Li, G. (2024). Self-collaboration code 

generation via chatgpt. ACM Transactions on Software Engineering 
and Methodology, 33(7), 1-38. 

[6] Gołąb-Andrzejak, E. (2024). AI-powered Customer Relationship 

Management–GenerativeAI-based CRM–Einstein GPT, Sugar 

CRM, and MS Dynamics 365. Procedia Computer Science, 246, 

1790-1799. 

[7] Gorissen, S. C., Sauer, S., & Beckmann, W. G. (2024, November). 

Supporting the Development of Oracle APEX Low-Code 
Applications with Large Language Models. In International 

Conference on Product-Focused Software Process 

Improvement (pp. 221-237). Cham: Springer Nature Switzerland. 

[8] Imam, A. (2024). Integrating AI into Software Development Life 
Cycle. 

[9] Mukhitdinova, N., Shamsitdinova, M., Bolbekova, U., Otamuratov, 

O., Buranova, D., Kambarova, M., ... & Sapaev, I. (2025). Adaptive 

Wireless Network Model with Reinforcement Learning for 
Language Proficiency Development. Journal of Wireless Mobile 

Networks, Ubiquitous Computing, and Dependable Applications, 

16(1), 478-487. https://doi.org/10.58346/JOWUA.2025.I1.028 

[10] Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., ... 

& Xiong, C. (2022). Codegen: An open large language model for 

code with multi-turn program synthesis. 

https://doi.org/10.48550/arXiv.2203.13474 

[11] Onopreychuk, D. (2018). The use of computer technological 
simulation for designing a Cisco hierarchical framework at the 

Hilton Hotel. International Journal of Communication and 

Computer Technologies, 6(1), 19-22. 

[12] Oracle APEX Blog. (2024). Coding with the AI Powered APEX 
Assistant on Oracle APEX. 

https://blogs.oracle.com/apex/post/coding-with-the-ai-powered-
apex-assistant-on-oracle-apex 

[13] Parmar, D. (2023). Enhancing customer relationship management 

with salesforce Einstein GPT. 

[14] Ramachandran, K., & Naik, R. (2024). Decolonizing Development: 

Equity and Justice in Global South SDG Frameworks. International 
Journal of SDG’s Prospects and Breakthroughs, 2(2), 1-3. 

[15] SEKER, S. E. (2024). Experiences and Challenges in AI-Driven 

Modular Software Development Using Large Language Models for 

Code Generation. 
https://doi.org/10.22541/au.172871465.54826063/v1 

[16] Shamsudinova, I., Karimov, N., Umarova, M., Mustafaqulova, D., 

Almuratova, G., Qodirov, S., Istamova, D., & Matniyoz, S. (2025). 

Educational Disparities in the Digital Era and the Impact of 
Information Access on Learning Achievements. Indian Journal of 

Information Sources and Services, 15(1), 6–11. 

https://doi.org/10.51983/ijiss-2025.IJISS.15.1.02 

[17] Shlomov, S., Yaeli, A., Marreed, S., Schwartz, S., Eder, N., Akrabi, 
O., & Zeltyn, S. (2024). IDA: Breaking Barriers in No-code UI 

Automation Through Large Language Models and Human-Centric 

Design. https://doi.org/10.48550/arXiv.2407.15673 

[18] Stratton, J. (2024). Copilot for Microsoft 365: Harness the power of 
generative AI in the Microsoft apps you use every day. Springer 

Nature. 

[19] Taulli, T. (2024). AI-Assisted Programming: Better Planning, 

Coding, Testing, and Deployment. " O'Reilly Media, Inc.". 

[20] Vadera, A. (2016). A case study for Oracle database 
reporting (Doctoral dissertation, California State University, 

Sacramento). 

[21] Vaithilingam, P., Glassman, E. L., Groenwegen, P., Gulwani, S., 

Henley, A. Z., Malpani, R., ... & Yim, A. (2023, May). Towards 
more effective AI-assisted programming: A systematic design 

exploration to improve Visual Studio IntelliCode’s user experience. 

In 2023 IEEE/ACM 45th International Conference on Software 
Engineering: Software Engineering in Practice (ICSE-SEIP) (pp. 

185-195). IEEE. 

 


