Application of Artificial Intelligence in Applied Biology and Health Sciences

Authors

  • Binoy Kurian Assistant Professor, Department of Biotechnology, Christukula Mission English Medium Degree College, Affiliated to Awadesh Pratap Singh University (APS) Rewa, Madhya Pradesh, India

DOI:

https://doi.org/10.51983/ajeat-2022.11.1.3305

Keywords:

Artificial Intelligence, Protein Architecture, Drug Discovery, Drug Recycling, Drug Safety, Nutrient Value, Weather Forecasting

Abstract

In modern world, artificial intelligence will substitute or magnify human competency in Applied Biology and Health Sciences. AI is the cognitive brilliance manifested by machines or software. AI is growing as an outstanding field in information technology as it enriched the mankind in many circumstances. The application of AI across different disciplines promises an alternative sustainable solution for all human problems. AI is developed in last 10 years as a life changer; when it stated solving human problems easily. This includes solving protein architecture, drug discovery and design, drug recycling, drug safety, diagnose patients, to choose a suitable crop, to determine when to fertilize crops, to avoid adulteration of seeds, to diagnose the crop infections, for proper application of pesticides and herbicides, to identify and removal of weeds, to identify natural ripening of fruits, for the detection of food nutrient value, agri-products for the health and weather forecasting.

References

P. Avneet, “Artificial Intelligence and its application in different areas,” International Journal of Engineering and Innovative Technology (IJEIT), Vol. 4, No. 10, pp. 79-84, 2015.

K. B. Cohen and L. Hunter, “Getting started in text mining,” PLoS Comput Biol, Vol. 4, 2008.

T. Berners-Lee, J. Hendler, and O. Lassila, The semantic web. SciAm., Vol. 284, pp. 34-43, 2001.

I. Ahmad, M. U. Akhtar, S. Noor, and A. Shahnaz, “Missing linkprediction using common neighbor and centrality basedparameterized algorithm,” Sci Rep, Vol. 10, pp. 1-9, 2020.

J. Sukumaran, E. P. Economo, and L. L. Knowles, “Machine learning biogeographic processes from biotic patterns: a new trait dependentdispersal and diversification model with model choice by simulation-trained discriminant analysis,” Syst Biol, Vol. 65, pp. 525-545, 2016.

H. Saarenmaa, N. D. Stone, L. J. Folse, J. M. Packard, W. E. Grant, M. E. Makela, and R. N. Coulson, “An artificial intelligencemodelling approach to simulating animal/habitat interactions,” Ecol Modell, Vol. 44, pp. 125-141, 1988.

H. Soha, J. Felicia, S. Xinghua, S. Brian, W. Jin, and R. Jr. Epaminondas, “Artificial Intelligence for Biology,” Integrative and Comparative Biology, pp. 1-9, 2021.

T. Zamvova, “Role of artificial intelligence in biotechnology,” Medical and Clinical Research Reports, Vol. 2, No. 2, pp. 6-10, 2019.

Q. Kaiyang, G. Fei, L. Xiangrong, L. Yuan, and Z. Quan,“Application of Machine Learning in Microbiology,” Frontiers inMicrobiology, Vol. 827, No. 10, pp. 1-10, 2019.

S. Agrebi, and A. Larbi, Use of artificial intelligence in infectiousdiseases, Artificial Intelligence in Precision Health, Academic Press, pp. 415-438, 2020.

T. L. Wiemken, and R. R. Kelley, “Machine learning in epidemiology and health outcomes research,” Annu Rev Public Health, Vol. 41, pp. 21–36, 2020.

A. Murali, A. Bhargava, and E. S. Wright, “IDTAXA: a novelapproach for accurate taxonomic classification of microbiomesequences,” Microbiome, Vol. 6, pp. 140, 2018.

A. Fiannaca, L. L. Paglia, M. L. Rosa, G. L. Bosco, G. Renda, R. Rizzo, G. Salvatore and U. Alfonso, “Deep learning models forbacteria taxonomic classification of metagenomic data,” BMC Bioinformatics, Vol. 19, pp. 198, 2018.

D. Amgarten, L. P. P. Braga, A. M. da Silva, and J. C. Setubal, “MARVEL, a tool for prediction of bacteriophage sequences inmetagenomic bins,” Front.Genet, Vol. 9, pp. 304, 2018.

S. Roux, F. Enault, B.L. Hurwitz, and M.B. Sullivan, “VirSorter: mining viral signal from microbial genomic data,” PeerJ, Vol. 3, pp. 985, 2015.

J. Ren, N. A. Ahlgren, Y. Y. Lu, J. A. Fuhrman, and F. Z. Sun,“VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data,” Microbiome, Vol. 5, pp. 69,2017.

T. H. Davenport, T. Hongsermeier, and K. A. Mc Cord, “Using AI toimprove electronic health records,” Harvard Business Review, Vol. 12, pp. 1-6, 2016.

M. T. Ahmed and A. M Sahar, Journal of Computer Science, Vol. 10, No. 8, pp. 1355-1361, 2014.

B. P. Kolla and B. Mahendran, “Research Trends and Opportunities in Machine Learning in Biotech & Health Sciences,” IEEE India Info, Vol. 13, No. 4, pp. 82-84, 2018.

H. Zhu, “Big data and artificial intelligence modeling for drugdiscovery,” Annu. Rev. Pharmacol. Toxicol, Vol. 60, pp. 573-589, 2020.

H. L. Ciallella and H. Zhu, “Advancing computational toxicology inthe big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity,” Chem. Res. Toxicol, Vol. 32, pp. 536-547, 2019.

H. S. Chan, “Advancing drug discovery via artificial intelligence,” Trends Pharmacol. Sci, Vol. 40, No. 8, pp. 592-604, 2019.

N. Brown, Computational Methods to Support Drug Design, Silico Medicinal Chemistry: Royal Society of Chemistry, 2015.

J. C. Pereira, “Boosting docking-based virtual screening with deep learning,” J. Chem. Inf. Model, Vol. 56, pp. 2495-2506, 2016.

E. Coiera, Guide to medical informatics, the Internet andtelemedicine, Chapman & Hall Ltd, 1997.

T. H Davenport and J. Glaser, Just-in-time delivery comes toknowledge management, Harvard Business Review, 2002.

S. Sotirakos, B. Fouda, R. Mohamed, A. Noor, N. Cribben, C.Mulhall, A. O. Byrne, M. Aisling, C. Bridget and Ruairi, “Harnessing artificial intelligence in cardiac rehabilitation, a systematic review,” Future Cardiology, Vol. 18, No. 2, pp. 154-164, 2022.

R. Patcas, D.A. Bernini, A. Volokitin, E. Agustsson, R. Rothe, and R.Timofte, “Applying artificial intelligence to assess the impact oforthognathic treatment on facial attractiveness and estimated age,” International Journal of Oral and Maxillofacial Surgery, Vol. 48, No. 1, pp. 77-83, 2019.

R. Patcas, R. Timofte, A. Volokitin, E. Agustsson, T. Eliades,M.Eichenberger, and M.M. Bornstein, “Facial attractiveness of cleftpatients: a direct comparison between artificial-intelligence-based scoring and conventional rater groups,” European Journal ofOrthodontics, Vol. 41, No. 4, pp. 428-433, 2019.

J. S. Cao, Z. Y. Lu, M. Y. Chen, B. Zhang, S. Juengpanich, J. H. Hu,S. J. Li, W. Topatana, X. Y. Zhou, X. Feng, and J. L. Shen, “Artificial intelligence in gastroenterology and hepatology: Status andchallenges,” World Journal of Gastroenterology, Vol. 27, No. 16, pp. 1664-1690, 2021.

N. K. Tran, S. Albahra, L. May, S. Waldman, S. Crabtree,S.Bainbridge and H. Rashidi, “Evolving Applications of ArtificialIntelligence and Machine Learning in Infectious DiseasesTesting,” Clinical Chemistry, Vol. 68, No. 1, pp. 125-133, 2021.

N. Kobie, Deep Mind's new AI can spot breast cancer just as well asyour doctor, Wired UK, 2020.

S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova, H.Ashrafian, T. Back, M. Chesus, G. S. Corrado, A. Darzi, M.Etemadi, F. Garcia-Vicente, F. J. Gilbert, M. Halling-Brown, D.Hassabis, S. Jansen, A. Karthikesalingam, C.J. Kelly, D. King, J. R. Ledsam, D. Melnick, H. Mostofi, L. Peng, J. J. Reicher, B. Romera-Paredes, R. Sidebottom, M. Suleyman, D. Tse, K. C. Young, J. DeFauw and S. Shetty, “International evaluation of an AI system forbreast cancer screening,” Nature, Vol. 577, No. 7788, pp. 89-94, 2020.

Artificial intelligence identifies prostate cancer with near-perfect accuracy, Eurek Alert, 2020.

L. Pantanowitz, G.M. Quiroga-Garza, L. Bien, R. Heled, D.Laifenfeld, C. Linhart, J. Sandbank, A. Albrecht Shach, V. Shalev,M.Vecsler, P. Michelow, S. Hazelhurst and R. Dhir, “An artificialintelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation anddeployment study,” Lancet Digit Health, Vol. 2, No. 8, 2020.

S. Forsch, F. Klauschen, P. Hufnagl, and W. Roth, “Artificial Intelligence in Pathology,” Deutsches Arzteblatt International,Vol. 118, No. 12, pp. 199–204, 2021.

P. Jurmeister, M. Bockmayr, P. Seegerer, T. Bockmayr, D. Treue, G.Montavon, C. Vollbrecht, A. Arnold, D. Teichmann, K. Bressem, U.Schuller, M.V. Laffert, K.R. Muller, D. Capper and F. Klauschen,“Machine learning analysis of DNA methylation profilesdistinguishes primary lung squamous cell carcinomas from head andneck metastases,” Sci Transl Med, Vol. 11, No. 509, 2019.

A. N. Pisarchik, V. A. Maksimenko and A. E. Hramov, “From NovelTechnology to Novel Applications: Comment on “An IntegratedBrain-Machine Interface Platform with Thousands of Channels” by Elon Musk and Neuralink,” Journal of Medical InternetResearch, Vol. 21, No. 10, 2019.

M. L. Richardson, E. R. Garwood, Y. Lee, M. D. Li, H. S. Lo,A.Nagaraju, X. V. Nguyen, L. Probyn, P. Rajiah, J. Sin, A. P. Wasnik, and K. Xu, “Noninterpretive Uses of Artificial Intelligencein Radiology,” Acad Radiol, Vol. 28, No. 9, pp. 1225-1235, 2021.

S. Robert, W. Manuel, K. Emre, R. Christoph and K. David,“Artificial Intelligence and Machine Learning in Nuclear Medicine:Future Perspectives,” Seminars in Nuclear Medicine, Vol. 51, No. 2, pp. 170-177, 2021.

Downloads

Published

10-06-2022

How to Cite

Kurian, B. (2022). Application of Artificial Intelligence in Applied Biology and Health Sciences. Asian Journal of Engineering and Applied Technology, 11(1), 21–24. https://doi.org/10.51983/ajeat-2022.11.1.3305