A Theoretical Study on the Thermoelectric Properties of Porous Armchair Germanene Nanoribbons
DOI:
https://doi.org/10.51983/ajes-2019.8.2.2360Keywords:
Thermoelectric, Nanoribbon, Figure of Merit, Nanopore, Thermal ConductivityAbstract
Since the limits of conventional sources of energy are rapidly approaching, the thermoelectric devices have attracted attention for their potential of power generation directly from waste heat. In this paper, thermoelectric properties of porous armchair Germanene nanoribbons (AGeNRs) have been explored for a range of pore dimensions in order to achieve a high performance two-dimensional nanoscale thermoelectric device. The work has been done to investigate the influence of different nanopore shapes and their associated positions on the thermoelectric performance so as to tune it to the optimum pore shape and position that would enhance the overall thermoelectric efficiency. Also, the effect of passivation of the pore edges on thermoelectric parameters for all shapes has been studied. Further, the influence of temperature dependence on figure of merit has been observed. Ballistic transport regime and semi-empirical method using Huckel basis set is used to obtain the electrical properties while the Brenner potential is used for the phononic properties.
References
D. D. Pollock, Thermoelectricity; Theory, Thermometry, Tool, Philadelphia, ASTM Special Technical Publication 852, 1985.
G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic principles and new materials developments, Springer series in Material Science., Berlin, Heidelberg: Springer, Vol. 45, 2001.
H. J. Goldsmid, Ed.1, Introduction to Thermoelectricity, Springer Series in Material Science., Berlin: Springer, Vol. 121, pp. 250, 2010.
H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, and R. T. Senger, "Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First- principles calculations", Physical Review B., vol. 80, pp. 155453, Oct. 2009.
M. M. Monshi, S. M. Aghaei and I. Calizo, "Edge functionalized germanene nanoribbons: impact on electronic and magnetic properties", RCS advances, vol. 7, pp. 18900-18908, Mar. 2017.
N. J. Roome, and J. D. Carey, "Beyond graphene: stable elemental monolayers of silicene and germanene", ACS applied materials & interfaces, vol. 6, pp. 7743-7750, 2014.
J. Yan, R. Stein, D.M. Schaefer, Xiao-Qian Wang, and M. Y. Chou, "Electron- Phonon Coupling in Two-Dimensional Silicene and Germanene", Physical Review B., vol. 88, 121403, Aug. 2013.
Z. Ni, Q. Liu, K. Tang, and J. Zheng et al., "Tunable Bandgap in Silicene and Germanene", Nano Letters 2012, vol. 12, pp. 113–118, Nov. 2011.
T. Y. Ng, J. Yeo, and Z. Liu, "Molecular dynamics simulation of the thermal conductivity of short strips of graphene and silicene: a comparative study", Int J Mech Mater Des., vol. 9, no. 2, pp. 105-114, Jun. 2013.
Y. Wang, J. Zheng, and Z. Ni et al., "Half-Metallic Silicene and Germanene Nanoribbons: towards High-Performance Spintronics Device", NANO: Brief reports and reviews, vol. 7, no. 5, pp. 1250037(1-9), Apr. 2013.
F. Bechstedt, L. Matthes, P. Gori and O. Pulci, "Infrared absorbance of silicone and germanene", Applied Physics Letter., vol. 100, 261906, Jun. 2012.
M. A. Balateroa, G. J. Paylagab, N. T. Paylagac, and R. V. Bantaculod, "Molecular Dynamics Simulations of Thermal Conductivity of Germanene Nanoribbons (GeNR) with Armchair and Zigzag Chirality", Applied Mechanics and Materials, vol. 772, pp. 67-71, Apr. 2015.
G. Baskaran, "Room Temperature Superconductivity, Spin Liquid and Mott Insulator: Silicene and Germanene as prospective playgrounds", Sep. 2013.
K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, and R. D’Agosta, "Thermoelectric properties of atomic-thin silicene and germanene nano-structures", Physical Review B., vol. 89, pp. 125403, Oct. 2013.
M. Houssaa, B. Broeka, E. Scalisea, G. Pourtoisb, V.V Afanas’eva, and A. Stesmansa, "Theoretical Study of Silicene and Germanene", ECS Transactions., vol. 53, no. 1, pp. 51-62, May 2013.
M. S. Hossain, F. A. Dirini, F. M. Hossain, and E. Skafidas, "High-performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores", Sci. Rep., vol. 5, 11297, Jun. 2015.
L. D. Hicks, and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit", Phys. Rev. B., vol. 47, pp. 12727, May 1993.
S. Kaur, S. B. Narang and D. K. Randhawa, "Influence of the pore shape and dimension on the enhancement of thermoelectric performance of graphene nanoribbons", Journal of Materials Research., vol. 32, pp. 1149-1159, Dec. 2016.
S. M. Aghaei, M. M. Monshi, I. Torres, M. Banakermani, and I. Calizo, "Lithium-functionalized germanene: A promising media for CO2 capture", Physics Letters A., vol. 382, pp. 334-338, Feb. 2018.
D. Kienle, J. I. Cerda, and A. W. Ghosh, "Extended Huckel Theory for band structure, chemistry, and transportI. Carbon nanotubes", Journal of Applied Physics, vol. 100, 043714, Aug. 2006.
M. S. Hossain, F. Al-Dirini, F. M. Hossain, and E. Skafidas, "High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores", Sci. Rep., vol. 5, 11297, Jun. 2015.
K. Esfarjani, M. Zebarjadi, and Y. Kawazoe, "Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation", Phys. Rev. B: Condens. Matter Mater. Phys., vol. 73, pp. 403-406, Feb.2006.
R. Landauer, "Spatial variation of currents and fields due to localized scatterers in metallic conduction", IBM. J. Res. Dev., vol. 1, pp. 223, Jul. 1957.
K. Stokbro, D.E. Petersen, S. Smidstrup, A. Blom, M. Ipsen, and K. Kaasbjerg, "Semiemperical model for nanoscale device simulations", Phys. Rev. B:Condens. Matter Mater. Phys., vol. 82, 075420, Aug. 2010.
J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2", Nat. Nano., vol. 3, pp. 206-209, Apr. 2008.
L. Pan, H. J. Liu, X. J. Tan, H. Y. Lv, J. Shi, X. F. Tang, and G. Zheng, "Thermoelectric properties of armchair and zigzag silicone nanoribbons", Physical Chemistry Chemical Physics, vol. 14, pp. 13588– 13593, Jul. 2012.
L. Hu, and D. Maroudas, "Thermal transport properties of grapheme nanomeshes", Journal of Applied Physics, vol. 116, 184304, Oct. 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 The Research Publication
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.