A Model for Brain Tumor Detection Using a Modified Convolution Layer ResNet-50

Authors

  • Rakesh Kumar Yadav Associate Professor, Department of CSE, MSOET, Maharishi University of Information Technology, Uttar Pradesh, India
  • Abhishek Kumar Mishra Associate Professor, Department of CSE, IFTM University, Moradabad, Uttar Pradesh, India
  • Dilip Kumar Jang Bahadur Saini Assistant Professor, Department of CSE, Pimpri Chinhwad University, Pune, Maharashtra, India
  • Hemlata Pant Assistant Professor, Department of CSE, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
  • R. G. Biradar Professor, Pimpri Chinhwad University, Pune, Maharashtra, India
  • Pranati Waghodekar Assistant Professor, Department of CSE, MIT WPU, Pune, Maharashtra, India

DOI:

https://doi.org/10.51983/ijiss-2024.14.1.3753

Keywords:

CNN, Brain Tumour, MRI, Deep Learning

Abstract

Tumors are the second most prevalent type of cancer, posing a serious concern to many individuals due to their unregulated tissue development. Efficient approaches for identifying tumors, particularly brain cancer, quickly, automatically, precisely, and correctly, are crucial in the medical industry. When cancer is appropriately recognized, early identification plays a critical role in effective treatment, ensuring patient safety. Tumors form as a result of uncontrolled cell development, causing the slow degeneration of brain tissue as they consume resources meant for healthy cells and tissues. While Magnetic Resonance Imaging (MRI) is used to examine images to establish tumor location and size, the procedure is inefficient and time-consuming. The suggested model’s key tool is the Convolutional Neural Network (CNN) model ResNet-50, which achieves an impressive accuracy rate of 81.6 percent. As expected, the model’s performance exceeds expectations.

References

Chen, H., Chen, D., & Wang, L. (2021). CNN-based MRI Brain Tumor Detection Application. In Proc. - 2021 Int. Conf. Comput. Eng. Appl. ICCEA 2021(pp. 464-467). doi: 10.1109/ICCEA53728.2021.00097.

Badisa, H., Polireddy, M., & Mohammed, A. (2019). CNN Based Brain Tumor Detection. International Journal of Engineering and Advanced Technology, no. 4, 2249-8958.

Prof, S., & Rifai, H. (2021). Brain Tumor Detection using Transfer Learning with AlexNet and CNN Aboli Kapadnis.

Gu, X., Shen, Z., Xue, J., Fan, Y., & Ni, T. (2021). Brain Tumor MR Image Classification Using Convolutional Dictionary Learning With Local Constraint.Frontiers in Neuroscience, 15(May), 1-12. doi: 10.3389/fnins.2021.679847.

Amin, J., Sharif, M., Haldorai, A., Yasmin, M., & Nayak, R. S. (2021). Brain tumor detection and classification using machine learning: A comprehensive survey. Complex Intelligent Systems. doi: 10.1007/s40747-021-00563-y.

El Kader, I. A., Xu, G., Shuai, Z., & Saminu, S. (2021). Brain Tumor Detection and Classification by Hybrid CNN-DWA Model Using MR Images. Current Medical Imaging Reviews, 17(10), 1248-1255. doi: 10.2174/1573405617666210224113315.

Bhandari, A., Koppen, J., &Agzarian, M. (2020). Convolutional neural networks for brain tumor segmentation. Insights Imaging, 11(1). doi: 10.1186/s13244-020-00869-4.

Grampurohit, S., Shalavadi, V., Dhotargavi, V. R., Kudari, M., &Jolad, S. (2020). Brain Tumor Detection Using Deep Learning Models. In Proc. - 2020 IEEE India Counc. Int. Subsections Conf. INDISCON 2020, pp. 129-134. doi: 10.1109/INDISCON50162.2020.00037.

Hossain, T., Shishir, F. S., Ashraf, M., Al Nasim, M. A., & Muhammad Shah, F. (2019). Brain Tumor Detection Using Convolutional Neural Network. In 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, pp. 5-7. doi: 10.1109/ICASERT.2019.8934561.

Irmak, E. (2021). Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 45(3), 1015-1036. doi: 10.1007/s40998-021-00426-9.

Sai, J. G. S., Deepika, S., Sindhuri, M. N., & Srinivasu, P. N. (2019-2020). Brain Tumour Identification Using Convolutional Neural Network.

Hossain, T., Shishir, F. S., Ashraf, M., Al Nasim, M. A., & Muhammad Shah, F. (2019). Brain Tumor Detection Using Convolutional Neural Network. In 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019 (no. December). doi: 10.1109/ICASERT.2019.8934561.

Chattopadhyay, A., & Maitra, M. (2022). MRI-based brain tumour image detection using CNN based deep learning method. Neuroscience Informatics, 2(4), 100060. doi: 10.1016/j.neuri.2022.1 00060.

Bakr Siddiaue, M. A., Sakib, S., Rahman Khan, M. M., Tanzeem, A. K., Chowdhury, M., & Yasmin, N. (2020). Deep convolutional neural networks model-based brain tumor detection in brain MRI images. In Proc. 4th Int. Conf. IoT Soc. Mobile, Anal. Cloud, ISMAC 2020, pp. 909-914. doi: 10.1109/I-SMAC49090.2020.9243461.

Kumar, G., Kumar, P., & Kumar, D. (2021). Brain Tumor Detection Using Convolutional Neural Network. 2021 IEEE International Conference on Mobile Networks and Wireless Communications, ICMNWC 2021, 12(11), 686-692. doi: 10.1109/ICMNWC52512.2021.9688460.

Arif, M., Ajesh, F., Shamsudheen, S., Geman, O., Izdrui, D., & Vicoveanu, D. (2022). Brain Tumor Detection and Classification by MRI Using Biologically Inspired Orthogonal Wavelet Transform and Deep Learning Techniques. Journal of Healthcare Engineering, 2022. doi: 10.1155/2022/2693621.

Downloads

Published

16-02-2024

How to Cite

Yadav, R. K., Mishra, A. K., Jang Bahadur Saini , D. K., Pant, H., Biradar, R. G., & Waghodekar, P. (2024). A Model for Brain Tumor Detection Using a Modified Convolution Layer ResNet-50. Indian Journal of Information Sources and Services, 14(1), 29–38. https://doi.org/10.51983/ijiss-2024.14.1.3753